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Abstract: Areca nut consumption is a popular habit in Southeast Asian countries. 
One of  the important biologically active alkaloids of  areca nut is arecoline, which 
plays a role in mediating the development of  several pathologies of  the primary 
exposure site, the oral cavity. Studies on the metabolism of  arecoline revealed 
the formation of  several metabolites which themselves might be toxic. Moreover, 
polymorphisms in genes encoding enzymes involved in the metabolism of  arecoline 
might predispose an organism towards the development of  oral cancer. The present 
review tries to accumulate all the relevant existing literature and then elucidate 
the molecular mechanism by which arecoline plays a role in the development of  
oral submucous fibrosis and oral cancer. Existing information regarding arecoline 
metabolism, enzymes involved in the metabolic process and biological effects of  the 
metabolites of  arecoline have also been compiled and compared to study the toxicity 
of  metabolites with its parent compound arecoline and whether they play any role 
in the pathogenesis of  oral cancer mediated by areca nut consumption. A repertoire 
of  molecular targets has come up in the discussion whose expression profile is 
perturbed by arecoline. Construction of  induction cascade from existing literature 
has given an idea about the process of  molecular pathogenesis. The summarized 
and analysed data can help to determine the molecular mechanism and drug targets, 
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which in turn could be helpful in the prevention or treatment of  these pathological 
conditions. It also brings into light areas where further research needs to be directed.

Introduction
Mortality is a severe issue in the case of  oral cancer, as indicated by the International 
Agency for Research in Cancer (IARC) report, GLOBOCAN series, 2012. According 
to this data, globally, 300,000 cases of  oral cancer and 145,000 cases of  death 
were reported in the year 2012 (Ferlay et al., 2015). As this form of  cancer majorly 
develops from the squamous cell region of  the oral cavity, it is also called oral 
squamous cell carcinoma (OSCC) (Rivera, 2015). The metastatic form is preceded 
by several pre-malignant stages, including leukoplakia, erythroplakia, oral lichen 
planus, and oral submucous fibrosis (OSF). These lesions show different rates 
of  transformation to the cancerous stage: 3.6 to 17.5% in leukoplakia, 70.3% in 
proliferative verrucous leukoplakia, 14 to 50% in erythroplakia, 0.04 to 1.74% in oral 
lichen planus and 7 to 13% in oral submucous fibrosis (Reichart and Philipsen, 2005; 
Tilakaratne et al., 2006; Kademani, 2007).

Areca nuts have been classified as a Class I carcinogen by IARC (IARC Working 
Group on the Evaluation of  Carcinogenic Risks to Humans, 2004). The chemical 
composition of  areca nut comprises alkaloids, flavonoids, tannins, along with 
carbohydrates, proteins, fats, crude fibre, and elements (IARC Working Group 
on the Evaluation of  Carcinogenic Risks to Humans, 2004; Peng et al., 2015). Of  
these, an important constituent is the alkaloid arecoline (IARC Working Group on 
the Evaluation of  Carcinogenic Risks to Humans, 2004). In a study by Cox et al. 
(2010), most of  the habitual areca nut consumers were found to have a baseline 
concentration of  arecoline in saliva reaching up to 2.4 µg/ml (0.01 mM). Apart 
from saliva, arecoline was detected in blood plasma, hair samples and breast milk 
samples from areca nut consumers (Marchei et al., 2005; Pellegrini et al., 2007; Wu 
et al., 2010). It was also detected in the excreta collected from new-borns, whose 
mothers had consumed areca nut during their gestation period (Pichini et al., 2003). 
Therefore, the effects induced by arecoline might be due to its stability in the system 
apart from direct exposure.

The metabolic profile of  arecoline has brought into light the existence of  several 
metabolites (Nery, 1971; Giri et al., 2006). Few of  these metabolites have been 
detected in body fluids of  areca nut consumers opening up another area of  research 
involved in investigating the role of  these metabolites in areca nut mediated oral 
pathologies.

In this review, we try to (1) create a metabolic map of  arecoline from existing 
literature, (2) discuss the molecular mechanisms and pathways induced by arecoline 
that are responsible for the development of  oral submucous fibrosis (OSF) and oral 
squamous cell carcinoma (OSCC), (3) describe the biological effects of  arecoline 
metabolites and thereby assess if  the metabolites are more toxic than the parent 
compound itself  and play a part in the pathogenesis of  OSF and OSCC, and finally 
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(4) understand the mechanism of  metabolism of  arecoline and arecoline N-oxide by 
gathering knowledge about enzymes involved, which in turn may enable to estimate 
predisposition of  an individual towards the development of  oral cancer in areca nut 
consumers.

Metabolism of arecoline
The metabolic profile of  arecoline might play a role in areca nut mediated 
pathogenesis of  OSF and OSCC. This brings out the need to delve into the depths 

Figure 1 – Chemical structure of  arecoline and metabolites.
(a) arecoline; (b) arecaidine; (c) arecoline N-oxide; (d) arecaidine N-oxide; (e) N-methylnipecotic acid;  
(f ) 1-methylnipecotic acid 1-oxide methylester; (g) 1-methyl-3,4-dehydropiperidine-3-carboxaldehyde;  
(h) arecaidinylglycerol; (i) arecaidinylglycine; ( j) N-methylnipecotylglycine; (k) mercapturic acid of  arecoline;  
(l) mercapturic acid of  arecaidine; (m) mercapturic acid of  arecoline N-oxide; (n) 4-mercapto-1-methylnipecotic 
acid methylester; (o) 4-methylmercapto-1-methylnipecotic acid 1-oxide methylester;  
(p) 3-methylnitrosaminopropionitrile; (q) 3-methylnitrosaminopropionaldehyde; (r) N-nitrosoguvacoline;  
(s) N-nitrosonipecotic acid.
(b, c, d, e, h, i, j, k, l, m, p, q, r – metabolites of  arecoline; d, e, h, i, j, l – metabolites of  arecaidine;  
a, b, f, g, k, m, n, o – metabolites of  arecoline N-oxide; s – metabolite of  N-nitrosoguvacoline)
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of  the metabolomics of  arecoline and explore its potential towards the development 
of  oral pathology. Metabolism of  arecoline starts in the oral cavity itself. Both 
nitrite and thiocyanate (catalyst for nitrosation reaction) are present in human saliva 
(Boyland et al., 1971; Shivapurkar et al., 1980; Wenke et al., 1984a). When arecoline 
was incubated with sodium nitrite with or without sodium thiocyanate, the formation 
of  three compounds was observed: 3-(methylnitrosamino)propionaldehyde 
(MNPA), 3-(methylnitrosamino)propionitrile (MNPN) and N-nitrosoguvacoline 
(NGL) (Wenke and Hoffmann, 1983). Of  these, NGL and MNPN were detected in 
the saliva of  betel quid chewers (without tobacco) in the range of  2.2–9.5 µg/l and 
0.5–11.4 µg/l, respectively (Wenke et al., 1984a; Prokopczyk et al., 1987). These 
findings indicate that nitrosation of  arecoline does take place in the oral cavity of  
areca nut consumers, and thereby, buccal cells do get exposed to these nitrosated 
metabolites on chewing areca nut. In a mammalian test system, N-nitrosonipecotic 
acid (NNIP) was detected as a product of  metabolism of  NGL (Ohshima et al., 
1989). MNPA has not been detected in saliva samples of  areca nut consumers. 
However, as the formation of  MNPA from arecoline takes place under in vitro 
conditions, fast metabolism of  MNPA to its metabolites in vivo might explain 
this finding. The metabolome of  arecoline, arecaidine and arecoline N-oxide in 
vivo was investigated by Nery (1971) and Giri et al. (2006, 2007). This research 
revealed several unknown and novel metabolites (Figure 1). Of  these, arecaidine 
and N-methyl nipecotic acid were detected in the urine of  areca nut consumers 
(Hu et al., 2010).

Figure 2 depicts a metabolic map of  arecoline.

Role of arecoline in induction of oral pathologies
Genotoxic effects of  arecoline were proved in mice using tests evaluating the 
formation of  chromosomal aberrations and micronucleus (Shirname et al., 1984; 
Deb and Chatterjee, 1998). At the molecular level, arecoline induces a DNA damage 
response cascade involving phosphorylation of  ataxia-telangiectasia (ATM) kinase 
and its downstream targets checkpoint kinase 1/2 (Chk1/2), p53 and Nbs1, leading 
to a G2/M cell cycle arrest. However, the overall expression of  p53 is down-
regulated by arecoline, which is followed by suppression of  p53 mediated DNA 
repair activities and expression of  its downstream target p21WAF1 (Tsai et al., 2008). 
Arecoline has also been found to induce decreased expression of  p21 and p27 via a 
p53 independent process that includes reactive oxygen species (ROS) and activation 
of  mammalian target of  rapamycin complex-1 (mTORC1) pathway ( Ji et al., 2012). 
According to Ji et al. (2012), down-regulation of  these inhibitors of  cell cycle 
might lead to erroneous DNA replication as the cells escape the G1/S checkpoint. 
Arecoline also disturbs the fluidity of  polymerisation-depolymerisation kinetics of  
α-tubulin by favouring their polymerisation. It leads to a disfigurement of  the mitotic 
spindle and an erroneous arrangement of  chromosomes, thereby inducing the 
pro-metaphase cell cycle arrest (Wang et al., 2010). Apart from these alterations, 
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protein expression of  several other cell cycle regulatory molecules like cdc25c in 
basal carcinoma cells (Huang et al., 2012), cyclin B1 and Wee-1 in KB epithelial cells 
(Lee et al., 2006) and cyclin D1, cyclin A, cyclin E, CDK4, and CDK2 in HaCaT 
keratinocytes (Zhou et al., 2013) have been found to be modulated by arecoline.

Arecoline treatment leads to the down-regulation of  the immune system in 
mice (Dasgupta et al., 2006; Wen et al., 2006). By contrast, Hung et al. (2011) 
reported the production of  ROS in endothelial cells on exposure to arecoline, 
which resulted in an up-regulated expression of  adhesion molecules (intercellular 
adhesion molecule – ICAM, and vascular cell adhesion molecule – VCAM). This 
effect increased adhesion between mononuclear cells and endothelial cells, which 
might play a role in augmenting the inflammation. Additionally, several inflammatory 
cytokines have also been found to be induced by arecoline, such as interleukin-1α, 
prostaglandin E-2, and cycloxygenase-2 in fibroblasts ( Jeng et al., 2003; Tsai et al., 
2003; Thangjam and Kondaiah, 2009).

DNA damage and impaired DNA repair, along with chronic inflammation, can be 
emphasized as the main causes of  arecoline induced oral pathologies. Moreover, 
expression profiles of  several extracellular matrix (ECM) proteins, enzymes, growth 
factors, and transcription factors are altered under the effect of  arecoline (Figure 3). 
All these factors work in an association as indicated by several studies involving 
fibroblasts, epithelial cells and cancer cell lines (Tables 1 and 2).

Oral submucous fibrosis (OSF) is a pre-cancerous condition that develops 
from an abnormal wound healing process under continuous exposure to the 
components of  areca nut (Angadi et al., 2011). Inhibition of  elements involved in 
the degradation of  extracellular matrix (ECM) or enhanced stability and synthesis of  
matrix components disturbs the homeostasis of  ECM, which can give rise to disease 
conditions like fibrosis. Arecoline works positively in both these aspects. It enhances 
the expression of  several inhibitors of  proteinases, including tissue inhibitors of  
metalloproteinases (TIMPs), plasminogen activator inhibitors (PAI-1) and cysteine 
proteinase inhibitor cystatin C in fibroblasts (Chang et al., 2002a; Yang et al., 2003; 
Tsai et al., 2007) along with induction of  factors that enhance the stability of  ECM, 
such as heat shock protein-47 (Hsp-47) and transglutaminase-2 (TGM-2) (Yang et 
al., 2008; Lee et al., 2015). Moreover, arecoline has been found to decrease the 
phagocytosis of  collagen by fibroblasts (Shieh et al., 2004).

An analysis of  the repertoire of  moieties affected by arecoline (data compiled 
in Tables 1 and 2) has bought into light several mediators of  the effects induced 
by arecoline of  which three, ROS, transforming growth factor-β1 (TGF-β1) and 
hypoxia-inducible factor-1α (HIF-1α), might play key roles in the pathogenesis of  
OSF and OSCC.

Of the several isoforms of  TGF-β (TGF-β1/2/3), TGF-β1 is a critical mediator 
of  oral pathologies. Its overexpression has been observed in OSF tissue samples 
(Kamath et al., 2015). Up-regulated expression of  αvβ6 integrin on keratinocytes 
under arecoline’s affect supports the activation of  latent TGF-β1 present in ECM that 
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in turn triggers the myofibroblastic transformation of  fibroblasts (Moutasim et al., 
2011). After being activated via integrin, plasminogen activated receptor-1 (PAR-1) 
or TGM-2, TGF-β1 binds to its receptor and sets on a cascade of  signalling events 
that induce the expression of  growth factors, cytokines and transcription factors 
in resident fibroblasts thereby transforming them into myofibroblasts (Figure 3) 
(Eickelberg et al., 1999; Griffin et al., 2002; Samarakoon et al., 2008; Lin et al., 
2013; Yang et al., 2013, 2016; Chang et al., 2014; Lamouille et al., 2014; Chen et al., 
2016; Hsieh et al., 2017). Myofibroblasts are cells specialized for wound healing with 
capacity for the secretion of  ECM materials and cellular contraction (Micallef  et al., 
2012). TGF-β1 stimulates myofibroblasts to produce modulators of  ECM proteins 
(PAI-1, TIMP-1, CTGF, etc.) and transcription factors involved in epithelial-to-
mesenchymal transition (EMT) (Twist, Zeb, etc.) (Figure 3). Up-regulated expression 
of  TGF-β1 has also been observed in cancer tissue samples (Lu et al., 2004).

Another important mediator of  arecoline induced effects is HIF-1α. Apart from 
being induced by arecoline itself  in fibroblasts and epithelial cells (Lee et al., 2010; 
Tsai et al., 2015), it plays a part in the induction of  several downstream factors that 
overlaps the repertoire induced by TGF-β1 (Figure 3) (Higgins et al., 2004; Tsai and 
Wu, 2012). Hypoxia prevails in fibrotic as well as tumour conditions, which prevents 
degradation of  HIF-1α. Under the hypoxic condition, stabilized HIF-1α dimerizes 
with HIF-1β and, in association with co-activators, it participates in the transcription 
of  genes with hypoxia-responsive element (HRE) (Tsai and Wu, 2012; Eckert et al., 
2016; Rankin and Giaccia, 2016). As reviewed by Tsai and Wu (2012) and Rankin 
and Giaccia (2016), several genes involved in metastasiring are regulated by HIF-1α, 
including transcription factors involved in EMT (Twist, Snail, Aeb1/2, etc.), enzymes 
like matrix metalloproteinases (MMP 1/3), matricellular proteins (cysteine rich 
protein 61 [Cyr61]), and angiogenic factors (vascular endothelial growth factor).

Several of  the pro-fibrotic or carcinogenic factors induced by arecoline are coupled 
with a decrease in intracellular thiol content and show reversible expression after 
treatment with antioxidants (Tables 1 and 2). This emphasizes ROS generation by 
arecoline to be a “cause” of  the various arecoline driven “effects” that trigger OSF or 
OSCC. Interplay can be observed between ROS and TGF-β1 as well as HIF-1α. For 
instance, ROS plays a part in the activation of  latent TGF-β1 complex tethered to the 
ECM ( Jobling et al., 2006). In turn, TGF-β1 acts to increase ROS production via the 
activity of  its downstream target NADPH oxidase-4 (NOX-4) along with suppression 
of  the antioxidant defence system of  exposed cells (Richter and Kietzmann, 2016). 
Apart from sharing a common array of  downstream targets, TGF-β1 and HIF-1α 
augment each other’s expression too. HIF-1α supports transcription of  TGF-β1 under 
hypoxic conditions, whereas, under normoxic conditions, TGF-β1 enhances the 
stability of  HIF-1α by decreasing expression of  HIF-1α inhibitor prolyl hydroxylase 2 
(PHD2) (McMohan et al., 2006; Hung et al., 2013). ROS induces HIF-1α stability and 
thereby its transcriptional activity via an adenosine monophosphate-activated protein 
kinase (AMPK) pathway ( Jung et al., 2008).
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ROS involvement in cancer includes induction of  pathways like mitogen-activated 
protein kinase (MAPK), phosphatidylinositol-3-kinase (PI3K)/Akt and nuclear factor 
kappa-light chain enhancer of  activated B-cells (NF-κB) (Liou and Storz, 2010). 
Analysis of  the data compiled in Tables 1 and 2 also indicates these pathways to be 
involved in the up-regulation of  pro-fibrotic or carcinogenic factors in cell systems 
affected by arecoline. Targeting these pathways might be a promising tool in the 
therapy of  ROS induced OSF and OSCC.

Figure 4 depicts hypothetical mechanistic pathways where ROS induced 
DNA damage along with perturbation of  expression profile of  growth factors, 
transcription factors and ECM proteins drive the development of  areca nut mediated 
oral pathologies.

As mentioned earlier, OSF can develop into a malignant phenotype. Therefore, 
it is important to understand how arecoline triggers the expression of  effectors 
that mediate this transition. Under continuous exposure to hypoxic conditions and 
HIF-1α activity, the transformation from fibrotic to cancer condition might take 
place, thereby highlighting arecoline’s role as a tumour promoter. Arecoline induced 
stabilisation of  HIF-1α and activation of  TGF-β1 play roles in the regulation of  

Arecoline

Arecoline N-oxide

(FMO-1,3)

Spindle assembly
misaligment Impaired DNA repair

DNA damage

Genetic instability

Chromosomal defects

p53

ROS

Growth factors, Transcription 
factors, Cytokines

MAPK, PI3K Akt, NF-κB, PKC pathways

Manifestation of oral pathologies

Generation of
myofibroblast

ECM
Modulatiom

EMT Metastasis Angiogenesis Abnormal cellular
proliferation

Figure 4 – A hypothetical mechanistic pathway of  arecoline mediated oral pathologies. 
Induction indicated by the symbol: 
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several transcription factors, such as ZEB-1, Snail, Twist, that induce both type 1  
and type 2 EMT leading to fibrosis and cancer, respectively (Lee et al., 2013;  
Chang et al., 2014; Ho et al., 2015; Lee et al., 2016).

Another interesting aspect of  arecoline, which was discovered during the study, 
is its differential activity to induce ECM modulators in fibroblasts and cancer cells. 
Exposed fibroblasts up-regulate TIMP-1, whereas MMP-2 is inhibited (Chang et al., 
2002a). In cancer cells, MMP-9 is induced, but TIMP-1 is inhibited (Chang et al., 
2013a). TGF-β1 has been found to regulate the expression of  MMP-9 via Snail 
transcription factor in cancer cells (Sun et al., 2008). After exposure of  cells from 
cancer cell line to arecoline for an extended period of  time, increased expression  
of  metalloproteinases MMP-8 and MMP-1 was observed (Liu et al., 2007; Lee et al., 
2008). This might indicate that under already initiated and promoted tumour 
conditions, arecoline might play a role in the progression of  areca nut induced 
carcinogenesis.

Junctional protein disruption is an essential phenomenon by which cells can acquire 
a metastatic phenotype (Parker et al., 2001). Giri et al. (2010) found arecoline to 
down-regulate tight junctional protein zona occludens-1 (ZO-1) and claudin-1 along 
with delocalisation of  both ZO-1 and E-cadherin. Down-regulation of  E-cadherin 
during junctional protein disruption leads to the dislocation of  β-catenin from the 
plasma membrane. Under the influence of  Wnt signalling in cancer conditions, 
degradation of  cytoplasmic β-catenin is also inhibited. Both junctional and 
cytoplasmic β-catenin then moves to the nucleus and acquires transcriptional control 
over genes, leading to abnormal cell proliferative activity (Kam and Quaranta, 2009; 
Camilli and Weeraratna, 2010; Liu and Millar, 2010). Arecoline exposure induces 
elevated expression of  β-catenin in epithelial cells (Lee et al., 2012b). Signalling 
cascades have been constructed using the accumulated data in Figure 3.

Role of arecoline metabolites in areca nut induced oral pathologies
Formation of  these metabolites in vitro or in in vivo systems indicates the probability 
of  exposure of  humans to these metabolites. An assessment of  the biological effects 
of  these metabolites is, therefore, necessary to understand the areca nut mediated 
pathogenesis of  OSF or OSCC.

The N-nitrosated metabolites, NMPA, NMPN and NGL, induce DNA 
single-stranded breaks in epithelial cells where NMPA was the strongest while 
NMPN and NGL were weak inducers (Sundqvist et al., 1989). Of  the in vivo 
metabolites, genotoxic effects were displayed by arecaidine in mice via induction 
of  sister chromatid exchanges (SCE) in bone marrow cells (Panigrahi and Rao, 
1984). Arecoline N-oxide was also found to be genotoxic in both mice model and 
fibroblasts (Kuo et al., 2015). The genotoxic potential of  the other metabolites of  
arecoline is unknown.

Both MNPA and MNPN were found to be carcinogenic in rats (Wenke et al., 
1984b; Nishikawa et al., 1992). NGL was neither found to be a strong mutagen in 
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the bacterial test system nor a strong carcinogen in the murine test system (Rivenson 
et al., 1988; Miyazaki et al., 2005). Activated N-nitrosamines can cause alkylation 
of  DNA base pairs (Miyazaki et al., 2005). Hence, activated areca nut derived 
nitrosamines can initiate carcinogenicity via alkylation of  DNA, as indicated by the 
study where MNPN was observed to induce methylation and cyanoethylation of  
guanine residues in rats, especially in the genetic material obtained from nasal mucosa, 
esophagus and liver (Prokopczyk et al., 1987, 1988). The role of  arecaidine as a pro-
fibrotic agent remains unclear as indicated by contradictory reports in  
in vitro models (Harvey et al., 1986; Tsai et al., 1999; Chang et al., 2013b).

The most important metabolite of  arecoline might be arecoline N-oxide. It was 
found to be mutagenic in bacteria without any metabolic activation (Lin et al., 2011). 
In mice, the compound induced increased collagen deposition in the tongue along with 
hyperplasia. Several pro-fibrotic genes (TGF-β1, IL-6, S100A4, and fibronectin) were 
induced by the compound in fibroblasts along with suppression of  E-cadherin (Kuo  
et al., 2015). Therefore, fibrosis induced by areca nut chewing can be mediated 
partially by arecoline N-oxide. In another study, N-oxide induced sub-lingual 
hyperplastic lesions in mice along with the up-regulated expression of  caspase-8, 
which, instead of  producing a pro-apoptotic effect, enhanced cell survival and 
proliferation (Ko et al., 2018). 8-hydroxydeoxy guanosine level in fibroblasts cultured 
in the presence of  arecoline N-oxide indicates oxidative stress induced DNA damage 
(Kuo et al., 2015). Similarly to arecoline, supplementation of  thiol-containing agents 
can reverse the mutagenic property of  the compound (Lin et al., 2011). These facts 
indicate oxidative stress to be an important factor for both arecoline and arecoline 
N-oxide induced pathologies. Hence, the consumption of  antioxidants can be a 
preventive factor against the development of  fibrosis and areca nut driven oral cancer.

Table 3 summarizes the various effects of  arecoline metabolites. It also provides an 
assessment of  the potential harmfulness of  the metabolites based on the possibility 
of  involvement in areca nut induced pathologies. Although arecoline N-oxide has 
been discovered as a possible candidate mediating areca nut effects, in the in vivo 
studies mentioned above, arecoline N-oxide was administered via oral brushing. On 
the other hand, Lin et al. (2011) observed that the compound lost its mutagenicity 
after metabolic activation by S9 fraction of  rat liver. Hence, the specific role of  the 
compound in vivo remains uncertain because the knowledge about direct exposure 
through areca nut is still unknown.

Involvement of enzymes in the metabolism of arecoline and arecoline 
N-oxide
A study of  arecoline metabolism along with metabolism of  its metabolites arecaidine 
and arecoline N-oxide has revealed basic routes that these compounds undergo. It 
involves de-esterification, N-oxidation and reduction of  the double bond leading to 
the formation of  metabolites, including mercapturic acids, mercapturic acid derivatives 
and nipecotic acid derivatives (Nery, 1971; Giri et al., 2006, 2007).
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According to Patterson and Kosh (1993), cytochrome P450 (CYP450) family 
of  enzymes do not play a significant role in arecoline metabolism because most 
of  arecoline was metabolized by mice liver homogenate even in the presence of  
nonspecific CYP450 inhibitor. However, these enzymes might be involved in the 
metabolic activation of  N-nitrosamine compounds formed from arecoline. This 
is supported by a study conducted in a bacterial test system where metabolic 
activation of  MNPN, MNPA and NGL was observed to be carried out by human 
CYP450 enzymes, especially by members of  family CYP2A and CYP1A1 (Miyazaki 
et al., 2005). CYP enzymes activate N-nitrosamines and the products formed, 
thereby lead to alkylation of  nucleic acid base pairs (Miyazaki et al., 2005). Genetic 
polymorphisms of  CYP enzyme encoding genes (CYP2A6 and CYP1A1) have been 
found to be associated with oral cancer (Kao et al., 2002; Topcu et al., 2002).

In contrast to CYP450, flavin-containing monooxygenases participate in the 
metabolism of  arecoline to its N-oxide (Giri et al., 2007). No association study has 
been found so far between the FMO polymorphism and oral cancer. As arecoline 
N-oxide is biologically active and might have a prominent role in areca nut mediated 
fibrotic disorders, the existence of  polymorphic variants of  the gene encoding 
this enzyme in the general population might develop predisposition towards 
development of  areca nut mediated fibrosis. FMO-1 carries out the process most 
efficiently of  all the other isozymes (Giri et al., 2007). It is abundantly expressed in 
the kidney (Zhang and Cashman, 2006). An association has been found between 
betel quid chewing and chronic kidney disorder in a population-based study. 
However, the association was influenced by several other factors (Hsu et al., 2011). 
In addition, a portion of  the formed N-oxide undergoes reduction and forms the 
parent compound arecoline. CYP450 family of  enzymes plays a role in this type of  
deoxygenation (Krueger and Williams, 2005; Montellano, 2013).

Carboxylesterases are involved in the metabolism of  arecoline to arecaidine 
(Patterson and Kosh, 1993). In vitro, mercapturic acid formation from arecoline 
does not require any enzymatic assistance (Boyland and Nery, 1969). Therefore, 
under in vivo condition, mercapturic acid formation from the parent compound and 
metabolites might involve reaction with glutathione without the involvement of  any 
enzymes. Although glutathione S-transferases (GSTs) participate in the phase 2 
metabolism of  xenobiotics, producing mercapturic acids (Hayakawa, 1977), the 
involvement of  GSTs in arecoline metabolism is not known.

Apart from the study conducted by Patterson and Kosh (1993) and Giri et 
al. (2007), direct involvement of  enzymes in the metabolism of  arecoline in 
mammals has not been studied. In a study carried out by Chiang et al. (2007), 
arecoline has been found to suppress the expression of  several phase I and phase 
II xenobiotic-metabolizing enzymes, which might indirectly affect the metabolism 
of  arecoline itself. Moreover, mechanism of  formation of  other metabolites like 
nipecotic acid derivatives and the aldehyde derivative of  arecoline (1-methyl- 
3,4-dehydropiperidine-3-carboxaldehyde) has not been studied yet.
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Table 3 – Summarizes the biological effects of the metabolites  
of arecoline

Serial 
no. Metabolites Biological activity Risk 

assessment

1. Arecaidine

Mutagenic in bacterial tester strains 
(TA100, TA 1535, TA 98, TA 1538) 
(Shirname et al., 1983).
Induced sister chromatid exchange in  
mice bone marrow cells (Panigrahi and 
Rao, 1984). 
Weakly induced DNA single strand 
break in cultured human epithelial cells 
(Sundqvist et al., 1989). 
Induced both collagen formation by 
fibroblasts and collagen phagocytic ability 
reduction of  fibroblasts (Harvey et al., 
1986; Tsai et al., 1999). 
Had no effect on the myofibroblastic 
transdifferentiation of  fibroblasts  
(Chang et al., 2013b). 
Induced senescence, DNA double 
stranded breaks along with  
transforming growth factor-β and  
matrix metalloproteinase-2 expressions  
in fibroblasts (Rehman et al., 2016).

Possibly 
harmful

2. Arecoline N-oxide

Mutagenic in bacterial tester strains 
(TA100, TA 98) (Lin et al., 2011). 
Induced DNA damage in both mammalian 
test system and cultured fibroblasts  
(Kuo et al., 2015). 
Induced pro-fibrotic genes in cultured 
fibroblasts (Kuo et al., 2015). 
Induced caspase-8 activation which rather 
had a cell proliferative effect (Ko et al., 
2018).

Possibly 
harmful

3.
3-methylnitrosamino- 
propionitrile

Induced tumour in several organ of  
exposed rats (Wenke et al., 1984b). 
Induced modification of  DNA base pair  
in exposed rats (Prokopczyk et al.,  
1988; Rivenson et al., 1988). 
Weak inducer of  DNA single strand 
breaks in cultured human epithelial cells 
(Sundqvist et al., 1989).

Possibly 
harmful

4.
3-methylnitrosamino- 
propionaldehyde

Induced DNA single strand break  
in cultured human epithelial cells 
(Sundqvist et al., 1989). 
Induced tumour in several organ of  
exposed rats (Nishikawa et al., 1992).

Possibly 
harmful



Arecoline and Metabolites: Role in Oral Pathologies

Prague Medical Report / Vol. 121 (2020) No. 4, p. 209–235 227)

Serial 
no. Metabolites Biological activity Risk 

assessment

5. N-nitrosoguvacoline

Weakly carcinogenic in rats (Rivenson  
et al., 1988). 
Weak inducer of  DNA single strand 
breaks in cultured human epithelial cells 
(Sundqvist et al., 1989). 
Weakly mutagenic in bacterial tester 
strains (TA100, TA 98) (Wang and Peng, 
1996).

Possibly 
harmless

6. Arecaidine N-oxide Unknown –

7. N-methylnipecotic acid Unknown –

8.
1-methylnipecotic acid 1-oxide  
methylester

Unknown –

9.
1-methyl-3,4-dehydropiperidine- 
3-carboxaldehyde

Unknown –

10. Arecaidinylglycerol Unknown –

11. Arecaidinylglycine Unknown –

12. N-methylnipecotylglycine Unknown –

13. Mercapturic acid of  arecoline Unknown –

14. Mercapturic acid of  arecaidine Unknown –

15.
Mercapturic acid of  arecoline 
N-oxide

Unknown –

16.
4-mercapto-1-methylnipecotic  
acid methylester

Unknown –

17.
4-methylmercapto-1-
methylnipecotic  
acid 1-oxide methylester

Unknown –

18. N-nitrosonipecotic acid Unknown –

CYP450 and FMO mediated metabolism of  arecoline N-oxide has been found 
to take place in the mitochondria of  liver cells in a study conducted by Wang et al. 
(2018). Mitochondrial metabolism of  arecoline N-oxide by the above-mentioned 
enzymes might be responsible for the generation of  ROS, which mediates the toxic 
effects of  the compound.

Conclusion
Apart from arecaidine and arecoline N-oxide, the biological effects of  other 
metabolites also need to be elucidated. Some of  them might be promptly modified 
by enzymes in a manner similar to mercapturic acids so that their excretion is 
facilitated, and subsequently, they pose a lesser threat for carcinogenic activity. 
Other compounds as well as metabolites that possess a high toxic potential might 
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also be present in areca nut and oral cells might be directly exposed to them on 
the consumption of  the nut. For example, both arecaidine and N-methylnipecotic 
acid are also present in areca nut (IARC Working Group on the Evaluation of  
Carcinogenic Risks to Humans, 2004; Hu et al., 2010). But as the toxicity of  
N-methylnipecotic acid is not known, its effect on the site of  exposure cannot be 
determined.

Knowledge about the enzymes and genes that encodes them can provide an 
important insight into the metabolism of  these xenobiotics. This will open another 
field of  research correlating the differential expression and polymorphisms of  these 
genes to an individual predisposition to oral cancer in betel nut consumers. Even 
the metabolites might be more potent in causing hazardous effects than the parent 
compound, as seen in the case of  arecoline N-oxide.
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