Prague Med. Rep. 2012, 113, 81-94

https://doi.org/10.14712/23362936.2015.24

Mitochondrial Metabolism – Neglected Link of Cancer Transformation and Treatment

Jiří Pokorný1, A. Jandová1, M. Nedbalová2, F. Jelínek1, M. Cifra1, O. Kučera1, D. Havelka1,3, J. Vrba3, J. Vrba, Jr.3, A. Čoček4, J. Kobilková5

1Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
2Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
3Department of Electromagnetic Field, Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic
4Department of Otorhinolaryngology, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
5Department of Obstetrics and Gynaecology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic

Received December 23, 2011
Accepted April 11, 2012

References

1. Albrecht-Buehler, G. (1991) Surface extensions of 3T3 cells towards distant infrared light sources. J. Cell Biol. 114, 493–502. <https://doi.org/10.1083/jcb.114.3.493> <PubMed>
2. Albrecht-Buehler, G. (1992) Rudimentary form of cellular “vision”. Proc. Natl. Acad. Sci. USA 89, 8288–8293. <https://doi.org/10.1073/pnas.89.17.8288> <PubMed>
3. Albrecht-Buehler, G. (2005) A long-range attraction between aggregating 3T3 cells mediated by near-infrared light scattering. Proc. Natl. Acad. Sci. USA 102, 5050–5055. <https://doi.org/10.1073/pnas.0407763102> <PubMed>
4. Amos, L. A. (1979) Structure of microtubules. In: Microtubules, eds. Roberts, K., Hyam, J. S., pp. 1–64, Academic Press, London, New York.
5. Beil, M., Micoulet, A., von Wichert, G., Paschke, S., Walther, P., Omary, M. B., Van Veldhoven, P. P., Gern, U., Wolff-Hieber, E., Eggermann, J., Waltenberger, J., Adler, G., Spatz, J., Seufferlein, T. (2003) Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nat. Cell Biol. 5, 803–811. <https://doi.org/10.1038/ncb1037>
6. Bonnet, S., Archer, S. L., Allalunis-Turner, J., Haromy, A., Beaulieu, Ch., Thompson, R., Lee, Ch. T., Lopaschuk, G. D., Puttagunta, L., Bonnet, S., Harry, G., Hashimoto, K., Porter, Ch. J., Andrade, M. A., Thebaud, B., Michelakis, E. D. (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37–51. <https://doi.org/10.1016/j.ccr.2006.10.020>
7. Carew, J. S., Huang, P. (2002) Mitochondrial defects in cancer. Mol. Cancer 1, 9–20. <https://doi.org/10.1186/1476-4598-1-9> <PubMed>
8. Chen, L. B. (1988) Mitochondrial membrane potential in living cells. Annu. Rev. Cell Biol. 4, 155–181. <https://doi.org/10.1146/annurev.cb.04.110188.001103>
9. Cross, S. E., Jin, Y.-S., Rao, J., Gimzewski, J. K. (2007) Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780–783. <https://doi.org/10.1038/nnano.2007.388>
10. Cuezva, J. M., Krajewska, M., López de Heredia, M., Krajewski, S., Santamaria, G., Kim, H., Zapata, J. M., Marusawa, H., Chamorro, M., Reed, J. (2002) The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res. 62, 6674–6681.
11. Damadian, R. (1971) Tumor detection by nuclear magnetic resonance. Science 171, 1151–1153. <https://doi.org/10.1126/science.171.3976.1151>
12. Foster, K. R., Baisch, J. W. (2000) Viscous damping of vibrations in microtubules. J. Biol. Phys. 26, 255–260. <https://doi.org/10.1023/A:1010306216654> <PubMed>
13. Fröhlich, H. (1968a) Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A 26, 402–403. <https://doi.org/10.1016/0375-9601(68)90242-9>
14. Fröhlich, H. (1968b) Long-range coherence and energy storage in biological systems. Int. J. Quantum Chem. II, 641–649. <https://doi.org/10.1002/qua.560020505>
15. Fröhlich, H. (1969) Quantum mechanical concepts in biology. In: Theoretical Physics and Biology, ed. Marois, M., pp. 13–22, North Holland, Amsterdam (Proc. 1st Int. Conf. Theor. Phys. Biol., Versailles, 1967).
16. Fröhlich, H. (1973) Collective behaviour of non-linearly coupled oscillating fields (with applications to biological systems). J. Collect. Phenom. 1, 101–109.
17. Fröhlich, H. (1978) Coherent electric vibrations in biological systems and cancer problem. IEEE Trans. MTT 26, 613–617. <https://doi.org/10.1109/TMTT.1978.1129446>
18. Fröhlich, H. (1980) The biological effects of microwaves and related questions. Adv. Electronics Electron Phys. 53, 85–152. <https://doi.org/10.1016/S0065-2539(08)60259-0>
19. Guck, J., Schinkinger, S., Lincoln, B., Wottawah, F., Ebert, S., Romeyke, M., Lenz, D., Erickson, H. M., Ananthakrishnan, R., Mitchell, D., Käs, J., Ulvick, S., Bilby, C. (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698. <https://doi.org/10.1529/biophysj.104.045476> <PubMed>
20. Hölzel, R. (2001) Electric activity of non-excitable biological cells at radio frequencies. Electro Magnetobiol. 20, 1–13. <https://doi.org/10.1081/JBC-100103156>
21. Hölzel, R., Lamprecht, I. (1994) Electromagnetic fields around biological cells. Neural Network World 4, 327–337.
22. Jandová, A., Pokorný, J., Kobilková, J., Janoušek, M., Mašata, J., Trojan, S., Nedbalová, M., Dohnalová, A., Beková, A., Slavík, V., Čoček, A., Sanitrák, J. (2009) Cell-mediated immunity in cervical cancer evolution. Electromagn. Biol. Med. 28, 1–14. <https://doi.org/10.1080/15368370802708868>
23. Jelínek, F., Cifra, M., Pokorný, J., Vaniš, J., Šimša, J., Hašek, J., Frýdlová, I. (2009) Measurement of electrical oscillations and mechanical vibrations of yeast cells membrane around 1 kHz. Electromagn. Biol. Med. 28, 223–232. <https://doi.org/10.1080/15368370802710807>
24. Khan, A. (2011) Use of oral dichloroacetate for palliation of leg pain arising from metastatic poorly differentiated carcinoma: a case report. J. Palliat. Med. 14, 1–6.
25. Kirson, E. D., Gurvich, Z., Schneiderman, R., Dekel, E., Itzhaki, A., Wasserman, Y., Schatzberger, R., Palti, Y. (2004) Disruption of cancer cell replication by alternating electric fields. Cancer Res. 64, 3288–3295. <https://doi.org/10.1158/0008-5472.CAN-04-0083>
26. Kirson, E. D., Dbalý, V., Tovaryš, F., Vymazal, J., Soustie, R., Wasserman, Y., Salzberg, M., Ryffel, B., Goldsher, D., Dekel, E., Palti, Y. (2007) Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc. Natl. Acad. Sci. USA 104, 10152–10157. <https://doi.org/10.1073/pnas.0702916104> <PubMed>
27. Lee, G. Y. H., Lim, Ch. T. (2007) Biomechanics approaches to studying human diseases. Trends Biotechnol. 25, 111–118. <https://doi.org/10.1016/j.tibtech.2007.01.005>
28. Ling, G. (2006) A new theoretical foundation for the polarized-oriented multilayer theory of cell water and for inanimate systems demonstrating long-range dynamic structuring of water molecules. Physiol. Chem. Phys. Med. NMR 35, 91–130.
29. McFate, T., Mohyeldin, A., Lu, H., Thakar, J., Henriques, J., Halim, N. D., Wu, H., Schell, M. J., Tsang, T. M., Teahan, O., Zhou, S., Califano, J. A., Jeoung, N. H., Harris, R. A., Verma, A. (2008) Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J. Biol. Chem. 283, 22700–22708. <https://doi.org/10.1074/jbc.M801765200> <PubMed>
30. McKemmish, L. K., Reimers, J. R., McKenzie, R. H., Mark, A. E., Hush, N. S. (2009) Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80, 021912-1–021912-6. <https://doi.org/10.1103/PhysRevE.80.021912>
31. Michelakis, E. D. (2008) Mitochondrial medicine. A new era in medicine opens new windows and brings new challenges. Circulation 117, 2431–2434. <https://doi.org/10.1161/CIRCULATIONAHA.108.775163>
32. Michelakis, E. D., Webster, L., Mackey, J. R. (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer 99, 989–994. <https://doi.org/10.1038/sj.bjc.6604554> <PubMed>
33. Pelling, A. E., Sehati, S., Gralla, E. B., Valentine, J. S., Gimzewski, J. K. (2004) Local nano-mechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305, 1147–1150. <https://doi.org/10.1126/science.1097640>
34. Pelling, A. E., Sehati, S., Gralla, E. B., Gimzewski, J. K. (2005) Time dependence of the frequency and amplitude of the local nanomechanical motion of yeast. Nanomedicine: Nanotechnology, Biology, and Medicine 1, 178–183. <https://doi.org/10.1016/j.nano.2005.04.002>
35. Pohl, H. A. (1980) Oscillating fields about growing cells. Int. J. Quantum Chem. Quantum Biol. Symp. 7, 411–431.
36. Pokorný, J. (2001) Endogenous electromagnetic forces in living cells: Implications for transfer of reaction components. Electro Magnetobiol. 20, 59–73. <https://doi.org/10.1081/JBC-100103160>
37. Pokorný, J. (2006) The role of Fröhlich’s coherent excitations in cancer transformation of cells. In: Herbert Fröhlich, FRS: A Physicist ahead of His Time, eds. Hyland, G. J., Rowlands, P., pp. 177–207, The University of Liverpool, Liverpool.
38. Pokorný, J. (2009a) Biophysical cancer transformation pathway. Electromagn. Biol. Med. 28, 105–123. <https://doi.org/10.1080/15368370802711615>
39. Pokorný, J. (2009b) Fröhlich’s coherent vibrations in healthy and cancer cells. Neural Network World 19, 369–378.
40. Pokorný, J. (2012) Physical aspects of biological activity and cancer. AIP Adv. 2. Pokorný, J., Hašek, J., Jelínek, F., Šaroch, J., Palán, B. (2001) Electromagnetic activity of yeast cells in the M phase. Electro Magnetobiol. 20, 371–396. <https://doi.org/10.1081/JBC-100108577>
41. Pokorný, J., Hašek, J., Jelínek, F. (2005a) Electromagnetic field of microtubules: Effects on transfer of mass particles and electrons. J. Biol. Phys. 31, 401–514. <https://doi.org/10.1007/s10867-005-1286-1> <PubMed>
42. Pokorný, J., Hašek, J., Jelínek, F. (2005b) Endogenous electric field and organization of living matter. Electromagn. Biol. Med. 24, 185–197. <https://doi.org/10.1080/15368370500379566>
43. Pokorný, J., Hašek, J., Vaniš, J., Jelínek, F. (2008) Biophysical aspects of cancer – Electromagnetic mechanism. Indian J. Exp. Biol. 46, 310–321.
44. Pokorný, J., Vedruccio, C., Cifra, M., Kučera, O. (2011) Cancer physics: diagnostics based on damped cellular elastoelectrical vibrations in microtubules. Eur. Biophys. J. 40, 747–759. <https://doi.org/10.1007/s00249-011-0688-1>
45. Pokorný, J., Martan, T., Foletti, A. (2012) High capacity optical channels for bioinformation transfer: acupuncture meridians. J. Acupunct. Meridian Stud. 5, 34–41. <https://doi.org/10.1016/j.jams.2011.11.017>
46. Pollack, G., Cameron, I., Wheatley, D. (2006) Water and the Cell. Springer, Dordrecht. Reimers, J. R., McKemmish, L. K., McKenzie, R. H., Mark, A. E., Hush, N. S. (2009) Weak, strong, and coherent regimes of Fröhlich condensation and their applications to terahertz medicine and quantum consciousness. Proc. Natl. Acad. Sci. USA 106, 4219–4224.
47. Sahu, S., Ghosh, S., Hirata, K., Fujita, D., Bandyopadhyay, A. (2012) Ultra-fast condensation of tubulins into microtubule unravels a generic resonance engineering. Nat. Mater. (in press).
48. Seyfried, T. N., Shelton, L. M. (2010) Cancer as a metabolic disease. Nutr. Metab. (Lond.) 7, 7. <https://doi.org/10.1186/1743-7075-7-7> <PubMed>
49. Stebbings, H., Hunt, C. (1982) The nature of the clear zone around microtubules. Cell Tissue Res. 227, 609–617. <https://doi.org/10.1007/BF00204791>
50. Sun, R. C., Fadia, M., Dahlstrom, J. E., Parish, C. R., Board, P. G., Blackburn, A. C. (2010) Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Res. Treat. 120, 253–260. <https://doi.org/10.1007/s10549-009-0435-9>
51. Suresh, S. (2007) Biomechanics and biophysics of cancer cells. Acta Mater. 55, 3989–4014. <https://doi.org/10.1016/j.actamat.2007.04.022>
52. Suresh, S., Spatz, J., Mills, J. P., Micoulet, A., Dao, M., Lim, C. T., Beil, M., Seufferlein, T. (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1, 15–30. <https://doi.org/10.1016/j.actbio.2004.09.001>
53. Tyner, K. M., Kopelman, R., Philbert, M. A. (2007) “Nanosized voltmeter” enables cellular-wide electric field mapping. Biophys. J. 93, 1163–1174. <https://doi.org/10.1529/biophysj.106.092452> <PubMed>
54. Vedruccio, C., Meessen, A. (2004) EM cancer detection by means of non-linear resonance interaction. In: Proceedings PIERS, Progress in Electromagnetics Research Symposium, Pisa, Italy, March 28–31 2004, pp. 909–912.
55. Warburg, O. (1956) On the origin of cancer cells. Science 123, 309–314. <https://doi.org/10.1126/science.123.3191.309>
56. Warburg, O., Posener, K., Negelein, E. (1924) Über den Stoffwechsel der Carcinomzelle. Biochem. Z. 152, 309–344.
57. Zheng, J., Pollack, G. H. (2003) Long-range forces extending from polymer-gel surfaces. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68, 031408-1–031408-7.
58. Zheng, J., Chin, W., Khijniak, E., Khijniak, E. Jr., Pollack, G. H. (2006) Surfaces and interfacial water: evidence that hydrophilic surfaces have long-range impact. Adv. Colloid Interface Sci. 127, 19–27. <https://doi.org/10.1016/j.cis.2006.07.002>
front cover

ISSN 1214-6994 (Print) ISSN 2336-2936 (Online)

Archive