Prague Med. Rep. 2012, 113, 95-104
https://doi.org/10.14712/23362936.2015.25
Fröhlich Systems in Cellular Physiology
References
1. Boyd, R. W. (2008) Nonlinear Optics. Academic Press, London.
2. , G. S., Calhoun, T. R., Read, E. L., Ahn, T. K., Mancal, T., Cheng, Y. C., Blankenship, R. E., Fleming, G. R. (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786.
<https://doi.org/10.1038/nature05678>
3. , H. (1968a) Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A 26, 402–403.
<https://doi.org/10.1016/0375-9601(68)90242-9>
4. , H. (1968b) Long-range coherence and energy storage in biological systems. J. Quantum Chem. II, 641–649.
<https://doi.org/10.1002/qua.560020505>
5. , S. R., Penrose, R. (1996) Conscious events as orchestrated space-time selections. J. Conscious. Stud. 3, 36–53.
6. , R., Lamprecht, I. (1995) Optimizing an electronic detection system for radiofrequency oscillations in biological cells. Neural Network World 5, 763–774.
7. , F., Pokorný, J., Šaroch, J., Trkal, V., Hašek, J., Palán, B. (1999) Microelectronic sensors for measurement of electromagnetic fields of living cells and experimental results. Bioelectrochem. Bioenerg. 48, 261–266.
<https://doi.org/10.1016/S0302-4598(99)00017-3>
8. , L. K., Reimers, J. R., McKenzie, R. H., Mark, A. E., Hush, N. S. (2009) Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80, 021912-1–021912-6.
<https://doi.org/10.1103/PhysRevE.80.021912>
9. , B. K., Winter, C. S. (1990) Organic second-order non-linear optical materials and devices. Opt. Quantum Electron. 22, 297–318.
<https://doi.org/10.1007/BF02189214>
10. , J. (2004) Excitation of vibrations in microtubules in living cells. Bioelectrochemistry 63, 321–326.
<https://doi.org/10.1016/j.bioelechem.2003.09.028>
11. , J., Fiala, J. (1992) Heat bath coupling effects in coherent vibration systems. Europhys. Lett. 19, 729–734.
<https://doi.org/10.1209/0295-5075/19/8/012>
12. , J., Hašek, J., Jelínek, F., Šaroch, J., Palán, B. (2001) Electromagnetic activity of yeast cells in the M phase. Electro Magnetobiol. 20, 371–396.
<https://doi.org/10.1081/JBC-100108577>
13. Pollack, D., Cameron, I., Wheatley, D. (2006) Water and the Cell. Springer, Dordrecht.
14. , J. R., McKemmish, L. K., McKenzie, R. H., Mark, A. E., Hush, N. S. (2009) Weak, strong, and coherent regimes of Fröhlich condensation and their applications to terahertz medicine and quantum consciousness. Proc. Natl. Acad. Sci. USA 106, 4219–4224.
<https://doi.org/10.1073/pnas.0806273106>
<PubMed>
15. , G. D. (2010) Green quantum computers. Nat. Phys. 6, 402–403.
<https://doi.org/10.1038/nphys1693>
16. , F. (2005) Fröhlich system with modulated access to pumping source. Electromagn. Biol. Med. 24, 265–272.
<https://doi.org/10.1080/15368370500379632>
17. , F. (2009) Occupation-dependent access to metabolic energy in Fröhlich systems. Electromagn. Biol. Med. 28, 194–200.
<https://doi.org/10.1080/15368370802711862>
18. , F., Pokorný, J. (1996) Topology of mutual relationships implicit in the Fröhlich model. Bioelectrochem. Bioenerg. 41, 31–33.
<https://doi.org/10.1016/0302-4598(96)01923-X>
19. , F., Pokorný, J. (1999) Causal structure of the Fröhlich model of cellular electromagnetic activity. Electro Magnetobiol. 18, 257–268.
<https://doi.org/10.3109/15368379909022582>
20. , K. M., Kopelman, R., Philbert, M. A. (2007) “Nanosized voltmeter” enables cellular-wide electric field mapping. Biophys. J. 93, 1163–1173.
<https://doi.org/10.1529/biophysj.106.092452>
<PubMed>
21. , M. H., Jones, M. R., Hunter, C. N., Breton, J., Martin, J. L. (1994) Coherent nuclear dynamics at room temperature in bacterial reaction centers. Proc. Natl. Acad. Sci. USA 91, 12701–12705.
<https://doi.org/10.1073/pnas.91.26.12701>
<PubMed>
22. , J., Chin, W., Khijniak, E., Khijniak, E. Jr., Pollack, G. H. (2006) Surfaces and interfacial water: evidence that hydrophilic surfaces have long-range impact. Adv. Colloid Interface Sci. 127, 19–27.
<https://doi.org/10.1016/j.cis.2006.07.002>


