Prague Med. Rep. 2012, 113, 95-104

https://doi.org/10.14712/23362936.2015.25

Fröhlich Systems in Cellular Physiology

Fedor Šrobár

Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Received December 20, 2011
Accepted April 11, 2012

References

1. Boyd, R. W. (2008) Nonlinear Optics. Academic Press, London.
2. Engel, G. S., Calhoun, T. R., Read, E. L., Ahn, T. K., Mancal, T., Cheng, Y. C., Blankenship, R. E., Fleming, G. R. (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786. <https://doi.org/10.1038/nature05678>
3. Fröhlich, H. (1968a) Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A 26, 402–403. <https://doi.org/10.1016/0375-9601(68)90242-9>
4. Fröhlich, H. (1968b) Long-range coherence and energy storage in biological systems. J. Quantum Chem. II, 641–649. <https://doi.org/10.1002/qua.560020505>
5. Hameroff, S. R., Penrose, R. (1996) Conscious events as orchestrated space-time selections. J. Conscious. Stud. 3, 36–53.
6. Hölzel, R., Lamprecht, I. (1995) Optimizing an electronic detection system for radiofrequency oscillations in biological cells. Neural Network World 5, 763–774.
7. Jelínek, F., Pokorný, J., Šaroch, J., Trkal, V., Hašek, J., Palán, B. (1999) Microelectronic sensors for measurement of electromagnetic fields of living cells and experimental results. Bioelectrochem. Bioenerg. 48, 261–266. <https://doi.org/10.1016/S0302-4598(99)00017-3>
8. McKemmish, L. K., Reimers, J. R., McKenzie, R. H., Mark, A. E., Hush, N. S. (2009) Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80, 021912-1–021912-6. <https://doi.org/10.1103/PhysRevE.80.021912>
9. Nayar, B. K., Winter, C. S. (1990) Organic second-order non-linear optical materials and devices. Opt. Quantum Electron. 22, 297–318. <https://doi.org/10.1007/BF02189214>
10. Pokorný, J. (2004) Excitation of vibrations in microtubules in living cells. Bioelectrochemistry 63, 321–326. <https://doi.org/10.1016/j.bioelechem.2003.09.028>
11. Pokorný, J., Fiala, J. (1992) Heat bath coupling effects in coherent vibration systems. Europhys. Lett. 19, 729–734. <https://doi.org/10.1209/0295-5075/19/8/012>
12. Pokorný, J., Hašek, J., Jelínek, F., Šaroch, J., Palán, B. (2001) Electromagnetic activity of yeast cells in the M phase. Electro Magnetobiol. 20, 371–396. <https://doi.org/10.1081/JBC-100108577>
13. Pollack, D., Cameron, I., Wheatley, D. (2006) Water and the Cell. Springer, Dordrecht.
14. Reimers, J. R., McKemmish, L. K., McKenzie, R. H., Mark, A. E., Hush, N. S. (2009) Weak, strong, and coherent regimes of Fröhlich condensation and their applications to terahertz medicine and quantum consciousness. Proc. Natl. Acad. Sci. USA 106, 4219–4224. <https://doi.org/10.1073/pnas.0806273106> <PubMed>
15. Scholes, G. D. (2010) Green quantum computers. Nat. Phys. 6, 402–403. <https://doi.org/10.1038/nphys1693>
16. Šrobár, F. (2005) Fröhlich system with modulated access to pumping source. Electromagn. Biol. Med. 24, 265–272. <https://doi.org/10.1080/15368370500379632>
17. Šrobár, F. (2009) Occupation-dependent access to metabolic energy in Fröhlich systems. Electromagn. Biol. Med. 28, 194–200. <https://doi.org/10.1080/15368370802711862>
18. Šrobár, F., Pokorný, J. (1996) Topology of mutual relationships implicit in the Fröhlich model. Bioelectrochem. Bioenerg. 41, 31–33. <https://doi.org/10.1016/0302-4598(96)01923-X>
19. Šrobár, F., Pokorný, J. (1999) Causal structure of the Fröhlich model of cellular electromagnetic activity. Electro Magnetobiol. 18, 257–268. <https://doi.org/10.3109/15368379909022582>
20. Tyner, K. M., Kopelman, R., Philbert, M. A. (2007) “Nanosized voltmeter” enables cellular-wide electric field mapping. Biophys. J. 93, 1163–1173. <https://doi.org/10.1529/biophysj.106.092452> <PubMed>
21. Vos, M. H., Jones, M. R., Hunter, C. N., Breton, J., Martin, J. L. (1994) Coherent nuclear dynamics at room temperature in bacterial reaction centers. Proc. Natl. Acad. Sci. USA 91, 12701–12705. <https://doi.org/10.1073/pnas.91.26.12701> <PubMed>
22. Zheng, J., Chin, W., Khijniak, E., Khijniak, E. Jr., Pollack, G. H. (2006) Surfaces and interfacial water: evidence that hydrophilic surfaces have long-range impact. Adv. Colloid Interface Sci. 127, 19–27. <https://doi.org/10.1016/j.cis.2006.07.002>
front cover

ISSN 1214-6994 (Print) ISSN 2336-2936 (Online)

Archive