Prague Med. Rep. 2012, 113, 223-230

https://doi.org/10.14712/23362936.2015.20

Anxiogenic Effect of Low-dose Methamphetamine in the Test of Elevated Plus-maze

Marie Pometlová, K. Nohejlová-Deykun, R. Šlamberová

Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic

Received February 23, 2012
Accepted June 25, 2012

References

1. Biala, G., Kruk, M. (2007) Amphetamine-induced anxiety-related behavior in animal models. Pharmacol. Rep. 59(6), 636–644.
2. Blanchard, D. C., Blanchard, R. J. (1999) Cocaine potentiates defensive behaviors related to fear and anxiety. Neurosci. Biobehav. Rev. 23(7), 981–991. <https://doi.org/10.1016/S0149-7634(99)00031-7>
3. Bubenikova-Valesova, V., Kacer, P., Syslova, K., Rambousek, L., Janovsky, M., Schutova, B., Hruba, L., Slamberova, R. (2009) Prenatal methamphetamine exposure affects the mesolimbic dopaminergic system and behavior in adult offspring. Int. J. Dev. Neurosci. 27(6), 525–530. <https://doi.org/10.1016/j.ijdevneu.2009.06.012>
4. Carobrez, A. P., Bertoglio, L. J. (2005) Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci. Biobehav. Rev. 29(8), 1193–1205. <https://doi.org/10.1016/j.neubiorev.2005.04.017>
5. Fernández Espejo, E. (1997) Structure of the mouse behaviour on the elevated plus-maze test of anxiety. Behav. Brain Res. 86(1), 105–112. <https://doi.org/10.1016/S0166-4328(96)02245-0>
6. File, S. E. (1993) The interplay of learning and anxiety in the elevated plus-maze. Behav. Brain Res. 58(1–2), 199–202. <https://doi.org/10.1016/0166-4328(93)90103-W>
7. File, S. E., Hyde, J. R. (1978) Can social interaction be used to measure anxiety? Br. J. Pharmacol. 62(1), 19–24. <https://doi.org/10.1111/j.1476-5381.1978.tb07001.x> <PubMed>
8. Gerlai, R., Blanchard, R. J., Blanchard, D. C. (2006) Animal models of anxiety: The ethologickal perspective. In: Contemporary Clinical Neuroscience: Transgenic and Konckout Models of Neuropsychiatric Disorders. Fisch, G. S., Flint, J., pp. 221–236, Humana Press, Totowa.
9. Geyer, M., Swerdlow, N. R. (2007) Behavioral neuroscience; Rat handling. In: Short Protocols in Neuroscience; Systems and Behavioral Methods. Crawley, J. N., Gerfen, C. R., Rogawski, M. A., Sibley, D. R., Skolnick, P., Wray, S. pp. 89–91, John Wiley and Sons, New Jersey.
10. Hassler, R., Wagner, A. (1975) Locomotor activity and speed of movements in relation to monoamine-acting drugs. Int. J. Neurol. 10(1–4), 80–97.
11. Hayase, T., Yamamoto, Y., Yamamoto, K. (2006) Behavioral effects of ketamine and toxic interactions with psychostimulants. BMC Neurosci. 7, 25. <https://doi.org/10.1186/1471-2202-7-25> <PubMed>
12. Hogg, S. (1996) A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol. Biochem. Behav. 54(1), 21–30. <https://doi.org/10.1016/0091-3057(95)02126-4>
13. Hyman, S. E., Malenka, R. C. (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2(10), 695–703. <https://doi.org/10.1038/35094560>
14. Kelley, A. E. (2004) Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44(1), 161–179. <https://doi.org/10.1016/j.neuron.2004.09.016>
15. Kelley, A. E., Berridge, K. C. (2002) The neuroscience of natural rewards: relevance to addictive drugs. J. Neurosci. 22(9), 3306–3311. <https://doi.org/10.1523/JNEUROSCI.22-09-03306.2002> <PubMed>
16. Kitanaka, J., Kitanaka, N., Tatsuta, T., Morita, Y., Takemura, M. (2007) Blockade of brain histamine metabolism alters methamphetamine-induced expression pattern of stereotypy in mice via histamine H1 receptors. Neuroscience 147(3), 765–777. <https://doi.org/10.1016/j.neuroscience.2007.05.006>
17. Koob, G. F., Le Moal, M. (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278(5335), 52–58. <https://doi.org/10.1126/science.278.5335.52>
18. Nesse, R. M., Berridge, K. C. (1997) Psychoactive drug use in evolutionary perspective. Science 278(5335), 63–66. <https://doi.org/10.1126/science.278.5335.63>
19. Pellow, S., Chopin, P., File, S. E., Briley, M. (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14(3), 149–167. <https://doi.org/10.1016/0165-0270(85)90031-7>
20. Pometlová, M., Mikulecká, A., Schutová, B., Hrubá, L., Deykun, K., Šlamberová, R. (2007) Vliv metamfetaminu na test sociálních interakcí u samců laboratorního potkana. (Effect of methamphetamine in the test of social interaction in adult male rats.) Psychiatrie 11, 94–97 (Suppl. 3). (in Czech)
21. Pometlová, M., Deykun, K., Mikulecká, A., Hrubá, L., Schutová, B., Šlamberová, R. (2008) Je snížení sociální interakce vyvolané nízkými dávkami metamfetaminu způsobené anxiogenním účinkem? (Is decrease of social interaction induced by low dose methamphetamine caused by anxiogenic effect?) Psychiatrie 12, 46–49 (Suppl. 3). (in Czech)
22. Rodgers, R. J., Cao, B. J., Dalvi, A., Holmes, A. (1997) Animal models of anxiety: an ethological perspective. Braz. J. Med. Biol. Res. 30(3), 289–304. <https://doi.org/10.1590/S0100-879X1997000300002>
23. Slamberova, R., Mikulecka, A., Pometlova, M., Schutova, B., Hruba, L., Deykun, K. (2010) The effect of methamphetamine on social interaction of adult male rats. Behav. Brain Res. 214(2), 423–427. <https://doi.org/10.1016/j.bbr.2010.06.019>
24. Tatsuta, T., Kitanaka, N., Kitanaka, J., Morita, Y., Takemura, M. (2005) Effects of monoamine oxidase inhibitors on methamphetamine-induced stereotypy in mice and rats. Neurochem. Res. 30(11), 1377–1385. <https://doi.org/10.1007/s11064-005-8390-2>
25. Weiss, S. M., Wadsworth, G., Fletcher, A., Dourish, C. T. (1998) Utility of ethological analysis to overcome locomotor confounds in elevated maze models of anxiety. Neurosci. Biobehav. Rev. 23(2), 265–271. <https://doi.org/10.1016/S0149-7634(98)00027-X>
front cover

ISSN 1214-6994 (Print) ISSN 2336-2936 (Online)

Archive