Prague Med. Rep. 2012, 113, 189-205

https://doi.org/10.14712/23362936.2015.17

Does Prenatal Methamphetamine Exposure Induce Cross-sensitization to Cocaine and Morphine in Adult Male Rats?

Romana Šlamberová, A. Yamamotová, M. Pometlová, B. Schutová, L. Hrubá, K. Nohejlová-Deykun, E. Nová, E. Macúchová

Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic

Received January 23, 2012
Accepted June 25, 2012

References

1. Ago, Y., Arikawa, S., Yata, M., Yano, K., Abe, M., Takuma, K., Matsuda, T. (2008) Antidepressant-like effects of the glucocorticoid receptor antagonist RU-43044 are associated with changes in prefrontal dopamine in mouse models of depression. Neuropharmacology 55, 1355–1363. <https://doi.org/10.1016/j.neuropharm.2008.08.026>
2. Arnold, J. C. (2005) The role of endocannabinoid transmission in cocaine addiction. Pharmacol. Biochem. Behav. 81, 396–406. <https://doi.org/10.1016/j.pbb.2005.02.015>
3. Bartoletti, M., Gaiardi, M., Gubellini, C., Bacchi, A., Babbini, M. (1985) Cross-sensitization to the excitatory effect of morphine in post-dependent rats. Neuropharmacology 24, 889–893. <https://doi.org/10.1016/0028-3908(85)90041-3>
4. Bernášková, K., Matějovská, I., Šlamberová, R. (2011) Postnatal challenge dose of methamphetamine amplifies anticonvulsant effects of prenatal methamphetamine exposure on epileptiform activity induced by electrical stimulation in adult male rats. Exp. Neurol. 229, 282–287. <https://doi.org/10.1016/j.expneurol.2011.02.011>
5. Bonate, P. L., Swann, A., Silverman, P. B. (1997) Behavioral sensitization to cocaine in the absence of altered brain cocaine levels. Pharmacol. Biochem. Behav. 57, 665–669. <https://doi.org/10.1016/S0091-3057(96)00387-5>
6. Bubeníková-Valešová, V., Kačer, P., Syslová, K., Rambousek, L., Janovský, M., Schutová, B., Hrubá, L., Šlamberová, R. (2009) Prenatal methamphetamine exposure affects the mesolimbic dopaminergic system and behavior in adult offspring. Int. J. Dev. Neurosci. 27, 525–530. <https://doi.org/10.1016/j.ijdevneu.2009.06.012>
7. Carey, R., Gui, J. (1997) A simple and reliable method for the positive identification of pavlovian conditioned cocaine effects in open-field behavior. J. Neurosci. Methods 73, 1–8. <https://doi.org/10.1016/S0165-0270(96)02203-0>
8. Carey, R. J., Damianopoulos, E. N. (2006) Cocaine conditioning and sensitization: the habituation factor. Pharmacol. Biochem. Behav. 84, 128–133. <https://doi.org/10.1016/j.pbb.2006.04.017>
9. Chen, J. Y., Yeh, G. C., Tao, P. L., Kuo, C. T., Chen, K. B., Wen, Y. R. (2010) Prenatal exposure to methamphetamine alters the mechanical withdrawal threshold and tonic hyperalgesia in the offspring. Neurotoxicology 31, 432–438. <https://doi.org/10.1016/j.neuro.2010.06.002>
10. Estelles, J., Rodriguez-Arias, M., Maldonado, C., Aguilar, M. A., Minarro, J. (2006) Gestational exposure to cocaine alters cocaine reward. Behav. Pharmacol. 17, 509–515. <https://doi.org/10.1097/00008877-200609000-00017>
11. Fattore, L., Deiana, S., Spano, S. M., Cossu, G., Fadda, P., Scherma, M., Fratta, W. (2005) Endocannabinoid system and opioid addiction: behavioural aspects. Pharmacol. Biochem. Behav. 81, 343–359. <https://doi.org/10.1016/j.pbb.2005.01.031>
12. Ferrario, C. R., Robinson, T. E. (2007) Amphetamine pretreatment accelerates the subsequent escalation of cocaine self-administration behavior. Eur. Neuropsychopharmacol. 17, 352–357. <https://doi.org/10.1016/j.euroneuro.2006.08.005>
13. Fleckenstein, A. E., Gibb, J. W., Hanson, G. R. (2000) Differential effects of stimulants on monoaminergic transporters: pharmacological consequences and implications for neurotoxicity. Eur. J. Pharmacol. 406, 1–13. <https://doi.org/10.1016/S0014-2999(00)00639-7>
14. Fleming, J. A., Byck, R., Barash, P. G. (1990) Pharmacology and therapeutic applications of cocaine. Anesthesiology 73, 518–531.
15. Gagin, R., Kook, N., Cohen, E., Shavit, Y. (1997) Prenatal morphine enhances morphine-conditioned place preference in adult rats. Pharmacol. Biochem. Behav. 58, 525–528. <https://doi.org/10.1016/S0091-3057(97)00281-5>
16. Gygi, M. P., Gygi, S. P., Johnson, M., Wilkins, D. G., Gibb, J. W., Hanson, G. R. (1996) Mechanisms for tolerance to methamphetamine effects. Neuropharmacology 35, 751–757. <https://doi.org/10.1016/0028-3908(96)84647-8>
17. He, S., Grasing, K. (2004) Chronic opiate treatment enhances both cocaine-reinforced and cocaine-seeking behaviors following opiate withdrawal. Drug Alcohol Depend. 75, 215–221. <https://doi.org/10.1016/j.drugalcdep.2004.02.010>
18. Heyser, C. J., Goodwin, G. A., Moody, C. A., Spear, L. P. (1992) Prenatal cocaine exposure attenuates cocaineinduced odor preference in infant rats. Pharmacol. Biochem. Behav. 42, 169–173. <https://doi.org/10.1016/0091-3057(92)90461-N>
19. Horger, B. A., Giles, M. K., Schenk, S. (1992) Preexposure to amphetamine and nicotine predisposes rats to self-administer a low dose of cocaine. Psychopharmacology (Berl.) 107, 271–276. <https://doi.org/10.1007/BF02245147>
20. Leri, F., Flores, J., Rajabi, H., Stewart, J. (2003) Effects of cocaine in rats exposed to heroin. Neuropsychopharmacology 28, 2102–2116. <https://doi.org/10.1038/sj.npp.1300284>
21. Malanga, C. J., Kosofsky, B. E. (2003) Does drug abuse beget drug abuse? Behavioral analysis of addiction liability in animal models of prenatal drug exposure. Brain Res. Dev. Brain Res. 147, 47–57. <https://doi.org/10.1016/j.devbrainres.2003.09.019>
22. Marwick, C. (2000) NIDA seeking data on effect of fetal exposure to methamphetamine. JAMA 283, 2225–2226. <https://doi.org/10.1001/jama.283.17.2225-JMN0503-2-1>
23. Mueller, D., Stewart, J. (2000) Cocaine-induced conditioned place preference: reinstatement by priming injections of cocaine after extinction. Behav. Brain Res. 115, 39–47. <https://doi.org/10.1016/S0166-4328(00)00239-4>
24. Nazarian, A., Rodarte-Freeman, A. L., McDougall, S. A. (1999) Dopaminergic modulation of kappa opioidmediated ultrasonic vocalization, antinociception, and locomotor activity in the preweanling rat. Behav. Neurosci. 113, 816–825. <https://doi.org/10.1037/0735-7044.113.4.816>
25. Patti, C. L., Frussa-Filho, R., Silva, R. H., Carvalho, R. C., Kameda, S. R., Takatsu-Coleman, A. L., Cunha, J. L., Abilio, V. C. (2005) Behavioral characterization of morphine effects on motor activity in mice. Pharmacol. Biochem. Behav. 81, 923–927. <https://doi.org/10.1016/j.pbb.2005.07.004>
26. Peltier, R. L., Li, D. H., Lytle, D., Taylor, C. M., Emmett-Oglesby, M. W. (1996) Chronic d-amphetamine or methamphetamine produces cross-tolerance to the discriminative and reinforcing stimulus effects of cocaine. J. Pharmacol. Exp. Ther. 277, 212–218.
27. Riley, M. A., Vathy, I. (2006) Mid- to late gestational morphine exposure does not alter the rewarding properties of morphine in adult male rats. Neuropharmacology 51, 295–304. <https://doi.org/10.1016/j.neuropharm.2006.03.022>
28. Rocha, B. A., Mead, A. N., Kosofsky, B. E. (2002) Increased vulnerability to self-administer cocaine in mice prenatally exposed to cocaine. Psychopharmacology (Berl.) 163, 221–229. <https://doi.org/10.1007/s00213-002-1140-0>
29. Roerig, S. C., Fujimoto, J. M. (1988) Morphine antinociception in different strains of mice: relationship of supraspinal-spinal multiplicative interaction to tolerance. J. Pharmacol. Exp. Ther. 247, 603–608.
30. Rothman, R. B., Baumann, M. H., Dersch, C. M., Romero, D. V., Rice, K. C., Carroll, F. I., Partilla, J. S. (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39, 32–41. <https://doi.org/10.1002/1098-2396(20010101)39:1<32::AID-SYN5>3.0.CO;2-3>
31. Sanchez, C. J., Bailie, T. M., Wu, W. R., Li, N., Sorg, B. A. (2003) Manipulation of dopamine d1-like receptor activation in the rat medial prefrontal cortex alters stress- and cocaine-induced reinstatement of conditioned place preference behavior. Neuroscience 119, 497–505. <https://doi.org/10.1016/S0306-4522(03)00078-2>
32. Schutová, B., Hrubá, L., Pometlová, M., Deykun, K., Šlamberová, R. (2008) Impact of methamphetamine administered prenatally and in adulthood on cognitive functions of male rats tested in Morris water maze. Prague Med. Rep. 109, 62–70.
33. Schutová, B., Hrubá, L., Pometlová, M., Šlamberová, R. (2009) Impact of prenatal and acute methamphetamine exposure on behaviour of adult male rats. Prague Med. Rep. 110, 67–78.
34. Shoblock, J. R., Sullivan, E. B., Maisonneuve, I. M., Glick, S. D. (2003) Neurochemical and behavioral differences between d-methamphetamine and d-amphetamine in rats. Psychopharmacology (Berl.) 165, 359–369. <https://doi.org/10.1007/s00213-002-1288-7>
35. Shuster, L., Yu, G., Bates, A. (1977) Sensitization to cocaine stimulation in mice. Psychopharmacology (Berl.) 52, 185–190. <https://doi.org/10.1007/BF00439108>
36. Šlamberová, R., Charousová, P., Pometlová, M. (2005) Methamphetamine administration during gestation impairs maternal behavior. Dev. Psychobiol. 46, 57–65. <https://doi.org/10.1002/dev.20042>
37. Šlamberová, R., Pometlová, M., Charousová, P. (2006) Postnatal development of rat pups is altered by prenatal methamphetamine exposure. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 82–88. <https://doi.org/10.1016/j.pnpbp.2005.06.006>
38. Šlamberová, R., Schutová, B., Matějovská, I., Bernášková, K., Rokyta, R. (2009) Effects of a single postnatal methamphetamine administration on NMDA-induced seizures are sex- and prenatal exposure-specific. Naunyn Schmiedebergs Arch. Pharmacol. 380, 109–114. <https://doi.org/10.1007/s00210-009-0427-7>
39. Šlamberová, R., Schutová, B., Hrubá, L., Pometlová, M. (2011a) Does prenatal methamphetamine exposure affect the drug-seeking behavior of adult male rats? Behav. Brain Res. 224, 50–86. <https://doi.org/10.1016/j.bbr.2011.05.021>
40. Šlamberová, R., Yamamotová, A., Schutová, B., Hrubá, L., Pometlová, M. (2011b) Impact of prenatal methamphetamine exposure on the sensitivity to the same drug in adult male rats. Prague Med. Rep. 112, 102–114.
41. Suto, N., Austin, J. D., Tanabe, L. M., Kramer, M. K., Wright, D. A., Vezina, P. (2002) Previous exposure to VTA amphetamine enhances cocaine self-administration under a progressive ratio schedule in a D1 dopamine receptor dependent manner. Neuropsychopharmacology 27, 970–979. <https://doi.org/10.1016/S0893-133X(02)00379-2>
42. Turner, C. D., Bagnara, J. T. (1976) Endocrinology of the ovary. In: General Endocrinology, eds. Turner, C. D., Bagnara, J. T., pp. 450–495, W. B. Saunders Company, Philadelphia.
43. Tzschentke, T. M. (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog. Neurobiol. 56, 613–672. <https://doi.org/10.1016/S0301-0082(98)00060-4>
44. Tzschentke, T. M., Schmidt, W. J. (1998) The development of cocaine-induced behavioral sensitization is affected by discrete quinolinic acid lesions of the prelimbic medial prefrontal cortex. Brain Res. 795, 71–76. <https://doi.org/10.1016/S0006-8993(98)00254-6>
45. Vadalouca, A., Moka, E., Argyra, E., Sikioti, P., Siafaka, I. (2008) Opioid rotation in patients with cancer: a review of the current literature. J. Opioid Manag. 4, 213–250. <https://doi.org/10.5055/jom.2008.0027>
46. Valvassori, S. S., Frey, B. N., Martins, M. R., Reus, G. Z., Schimidtz, F., Inacio, C. G., Kapczinski, F., Quevedo, J. (2007) Sensitization and cross-sensitization after chronic treatment with methylphenidate in adolescent Wistar rats. Behav. Pharmacol. 18, 205–212. <https://doi.org/10.1097/FBP.0b013e328153daf5>
47. Vathy, I., Šlamberová, R., Liu, X. (2007) Foster mother care but not prenatal morphine exposure enhances cocaine self-administration in young adult male and female rats. Dev. Psychobiol. 49, 463–473. <https://doi.org/10.1002/dev.20240>
48. Vavřínková, B., Binder, T., Živný, J. (2001) Characteristics of a population of drug dependent pregnant women in the Czech Republic. Ceska Gynekol. 66, 285–291. (in Czech)
49. Vela, G., Martin, S., Garcia-Gil, L., Crespo, J. A., Ruiz-Gayo, M., Javier Fernandez-Ruiz, J., Garcia-Lecumberri, C., Pelaprat, D., Fuentes, J. A., Ramos, J. A., Ambrosio, E. (1998) Maternal exposure to delta9-tetrahydrocannabinol facilitates morphine self-administration behavior and changes regional binding to central mu opioid receptors in adult offspring female rats. Brain Res. 807, 101–109. <https://doi.org/10.1016/S0006-8993(98)00766-5>
50. Vezina, P., Stewart, J. (1987) Morphine conditioned place preference and locomotion: the effect of confinement during training. Psychopharmacology (Berl.) 93, 257–260. <https://doi.org/10.1007/BF00179944>
51. Yamamotová, A., Hrubá, L., Schutová, B., Rokyta, R., Šlamberová, R. (2011) Perinatal effect of methamphetamine on nociception in adult Wistar rats. Int. J. Dev. Neurosci. 29, 85–92. <https://doi.org/10.1016/j.ijdevneu.2010.08.004>
52. Young, E. R., MacKenzie, T. A. (1992) The pharmacology of local anesthetics – a review of the literature. J. Can. Dent. Assoc. 58, 34–42.
53. Zemlan, F. P., Kow, L. M., Pfaff, D. W. (1984) Analgesia after lesions of nucleus reticularis magnocellularis: differential effect on supraspinal versus spinal pain reflexes. Pain 18, 221–237. <https://doi.org/10.1016/0304-3959(84)90818-2>
front cover

ISSN 1214-6994 (Print) ISSN 2336-2936 (Online)

Archive