Prague Med. Rep. 2014, 115, 104-119
https://doi.org/10.14712/23362936.2014.41
Targeting Mitochondria for Cancer Treatment – Two Types of Mitochondrial Dysfunction
References
1. 2012) Morphogenesis as a macroscopic self-organizing process. Biosystems 109, 262–279.
< , L. V. (https://doi.org/10.1016/j.biosystems.2012.05.003>
2. 2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37–51.
< , S., Archer, S. L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., Lee, C. T., Lopaschuk, G. D., Puttagunta, L., Bonnet, S., Harry, G., Hashimoto, K., Porter, C. J., Andrade, M. A., Thebaud, B., Michelakis, E. D. (https://doi.org/10.1016/j.ccr.2006.10.020>
3. 2010a) Ketones and lactate “fuel” tumor growth and metastasis. Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9, 3506–3514.
< , G., Tsirigos, A., Whitaker-Menezes, D., Pavlides, S., Pestell, R. G., Chiavarina, B., Frank, P. G., Flomenberg, N., Howell, A., Martinez-Outschoorn, U. E., Sotgia, F., Lisanti, M. P. (https://doi.org/10.4161/cc.9.17.12731>
<PubMed>
4. 2010b) The reverse Warburg effect. Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle 9, 1960–1971.
< , G., Whitaker-Menezes, D., Castello-Cros, R., Pavlides, S., Pestell, R. G., Fatatis, A., Witkiewicz, A. K., Vander Heiden, M. G., Migneco, G., Chiavarina, B., Frank, P. G., Capozza, F., Flomenberg, N., Martinez-Outschoorn, U. E., Sotgia, F., Lisanti, M. P. (https://doi.org/10.4161/cc.9.10.11601>
5. 1988) Mitochondrial membrane potential in living cells. Annu. Rev. Cell Biol. 4, 155–181.
< , L. B. (https://doi.org/10.1146/annurev.cb.04.110188.001103>
6. 2014) Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range. Oncotarget 5, 3287–3306.
< , B. T., Levin, M. (https://doi.org/10.18632/oncotarget.1935>
<PubMed>
7. 2010) HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells. Autophagy drives compartment-specific oncogenesis. Cell Cycle 9, 3534–3551.
< , B., Whitaker-Menezes, D., Migneco, G., Martinez-Outschoorn, U. E., Pavlides, S., Howell, A., Tanowitz, H. B., Casimiro, M. C., Wang, C., Pestell, R. G., Grieshaber, P., Caro, J., Sotgia, F., Lisanti, M. P. (https://doi.org/10.4161/cc.9.17.12908>
<PubMed>
8. 1968a) Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A 26, 402–403.
< , H. (https://doi.org/10.1016/0375-9601(68)90242-9>
9. 1968b) Long-range coherence and energy storage in biological systems. Int. J. Quantum Chem. II, 641–649.
< , H. (https://doi.org/10.1002/qua.560020505>
10. Fröhlich, H. (1969) Quantum mechanical concepts in biology. In: Theoretical Physics and Biology, ed. Marois, M., pp. 13–22, North Holland, Amsterdam (Proc. 1st Int. Conf. Theor. Phys. Biol., Versailles, 1967).
11. 1973) Collective behaviour of non-linearly coupled oscillating fields (with applications to biological systems). J. Collect. Phenom. 1, 101–109.
, H. (
12. 1978) Coherent electric vibrations in biological systems and cancer problem. IEEE Trans. MTT 26, 613–617.
< , H. (https://doi.org/10.1109/TMTT.1978.1129446>
13. 1980) The biological effects of microwaves and related questions. Adv. Electronics Electron Phys. 53, 85–152.
< , H. (https://doi.org/10.1016/S0065-2539(08)60259-0>
14. 1981) Status of mitochondria in living human fibroblasts during growth and senescence in vitro: Use of the laser dye rhodamine 123. J. Cell Biol. 91, 392–398.
< , S., Korczack, L. B. (https://doi.org/10.1083/jcb.91.2.392>
<PubMed>
15. 2003) The intrinsic mitochondrial membrane potential (ΔΨm) is associated with steady-state mitochondrial activity and the extent to which colonic epithelial cells undergo butyrate-mediated growth arrest and apoptosis. Cancer Res. 63, 6311–6319.
, B. G., Houston, M. A., Wilson, A. J., Augenlicht, L. H. (
16. 2006) Growth properties of colonic tumor cells are a function of the intrinsic mitochondrial membrane potential. Cancer Res. 66, 1591–1596.
< , B. G., Houston, M. A., Augenlicht, L. H. (https://doi.org/10.1158/0008-5472.CAN-05-2717>
17. 1969a) The level of the fifth isoenzyme LDH in the blood serum in precancerous endometrium patients. Cesk. Gynekol. 34, 402. (in Czech)
, A., Laurová, L., Novotná, J., Škoda, V. (
18. 1969b) La frequence d‘isozyme LDH dans le serum sanguin constatee‚ chez les femmes souffrant de cancer de la vulve. C. R. Soc. Fr. Gyncol. 39, 418–419.
, A., Škoda, V., Lavrová, L. (
19. 1970) Relation of isoenzyme LDH to hematological values in gynecological carcinoma. Transfúze 4, 91–92. (in Czech)
, A., Miluničová, A., Škoda, V. (
20. 1971) LDH activity in blood serum and tumorous tissue in ovarial cancer patients. Cesk. Gynekol. 36, 549–550. (in Czech)
, A., Kubátová, A., Macků, F., Novotná, J., Pezlarová, A. (
21. 2001) Effects of sinusoidal magnetic field on adherence inhibition of leukocytes. Electro Magnetobiol. 20, 397–413.
< , A., Hurych, J., Pokorný, J., Čoček, A., Trojan, S., Nedbalová, M., Dohnalová, A. (https://doi.org/10.1081/JBC-100108578>
22. 2009) Cell-mediated immunity in cervical cancer evolution. Electromagn. Biol. Med. 28, 1–14.
< , A., Pokorný, J., Kobilková, J., Janoušek, M., Mašata, J., Trojan, S., Nedbalová, M., Dohnalová, A., Beková, A., Slavík, V., Čoček, A., Sanitrák, J. (https://doi.org/10.1080/15368370802708868>
23. 1982) Deceased uptake and retention of rhodamine 123 by mitochondria in feline sarcoma virus-transformed mink cells. Cell 28, 7–14.
< , L. V., Summerhayes, I. C., Chen, L. B. (https://doi.org/10.1016/0092-8674(82)90369-5>
24. 2013) A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498, 109–112.
< , J., Zheng, L., Meissl, K., Chaneton, B., Serlivanov, V. A., Mackay, G., van der Burg, S. H., Verdegaal, E. M. E., Cascante, M., Shlomi, T., Gottlieb, E., Peeper, D. S. (https://doi.org/10.1038/nature12154>
25. 1977) Relation between the gradient of the ATP/ADP ratio and the membrane potential across the mitochondrial membrane. Eur. J. Biochem. 73, 125–130.
< , M., Rottenberg, H. (https://doi.org/10.1111/j.1432-1033.1977.tb11298.x>
26. 2011) Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells. Implications for preventing chemotherapy resistance. Cancer Biol. Ther. 12, 1085–1097.
< , Y. H., Lin, Z., Flomenberg, N., Pestell, R. G., Howell, A., Sotgia, F., Lisanti, M. P., Martinez-Outschoorn, U. E. (https://doi.org/10.4161/cbt.12.12.18671>
<PubMed>
27. 1983) Selective toxicity of rhodamine 123 in carcinoma cells in vitro. Cancer Res. 43, 716–720.
, T. J., Bernal, S. D., Summerhayes, I. C., Chen, L. B. (
28. 2012) Morphogenetic fields in embryogenesis, regeneration, and cancer: Non-local control of complex patterning. Biosystems 109, 243–261.
< , M. (https://doi.org/10.1016/j.biosystems.2012.04.005>
<PubMed>
29. 2014) Endogenous bioelectrical networks store non‐genetic patterning information during development and regeneration. J. Physiol. 592, 2295–2305.
< , M. (https://doi.org/10.1113/jphysiol.2014.271940>
<PubMed>
30. 2010) Understanding the “lethal” drivers of tumor-stroma co-evolution. Emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor micro-environment. Cancer Biol. Ther. 10, 537–542.
< , M. P., Martinez-Outschoorn, U. E., Chiavarina, B., Pavlides, S., Whitaker-Menezes, D., Tsirigos, A., Witkiewicz, A., Lin, Z., Balliet, R., Howell, A., Sotgia, F. (https://doi.org/10.4161/cbt.10.6.13370>
<PubMed>
31. 2010a) Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution. A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9, 3256–3276.
, U. E., Balliet, R. M., Rivadeneira, D. B., Chiavarina, B., Pavlides, S., Wang, C., Whitaker-Menezes, D., Daumer, K. M., Lin, Z., Witkiewicz, A. K., Flomenberg, N., Howell, A., Pestell, R. G., Knudsen, E. S., Sotgia, F., Lisanti, M. P. (
32. 2010b) Autophagy in cancer associated fibroblasts promotes tumor cell survival. Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle 9, 3515–3533.
< , U. E., Trimmer, C., Lin, Z., Whitaker-Menezes, D., Chiavarina, B., Zhou, J., Wang, C., Pavlides, S., Martinez-Cantarin, M. P., Cappozza, F., Witkiewicz, A. K., Flomenberg, N., Howell, A., Pestell, R. G., Caro, J., Lisanti, M. P., Sotgia, F. (https://doi.org/10.4161/cc.9.17.12928>
<PubMed>
33. 2011) Understanding the metabolic basis of drug resistance. Therapeutic induction of the Warburg effect kills cancer cells. Cell Cycle 10, 2521–2528.
< , U. E., Lin, Z., Ko, Y. H., Goldberg, A. F., Flomenberg, N., Wang, C., Pavlides, S., Pestell, R. G., Howell, A., Sotgia, F., Lisanti, M. P. (https://doi.org/10.4161/cc.10.15.16584>
<PubMed>
34. 2010) Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis. Evidence for stromal-epithelial metabolic coupling. Cell Cycle 9, 2412–2422.
< , G., Whitaker-Menezes, D., Chiavarina, B., Castello-Cros, R. C., Pavlides, S., Pestell, R. G., Fatatis, A., Flomenberg, N., Tsirigos, A., Howell, A., Martinez-Outschoorn, U. E., Sotgia, F., Lisanti, M. P. (https://doi.org/10.4161/cc.9.12.11989>
35. 1987) Basis for selective cytotoxicity of rhodamine 123. Cancer Res. 47, 4361–4365.
, J. S., Aprille, J. R. (
36. 1984) Rhodamine 123 inhibits bioenergetic function in isolated rat liver mitochondria. Biochem. Biophys. Res. Commun. 118, 717–723.
< , J. S., Weiss, M. J., Chen, L. B., Aprille, J. R. (https://doi.org/10.1016/0006-291X(84)91453-0>
37. 1989) Aberrant mitochondria in two human colon carcinoma cell lines. Cancer Res. 49, 3369–3373.
, J. S., Steele, G. D. Jr., Chen, L. B. (
38. 1996) Selective damage to carcinoma mitochondria by the rhodacyanine MKT-077. Cancer Res. 56, 544–550.
, J. S., Koya, K., Weisberg, E., Brunelli, B. T., Li, Y., Chen, L. B. (
39. 1985) Increased rhodamine 123 uptake by carcinoma cells. Cancer Res. 45, 6093–6099.
, K. K., Nadakavukaren, J. J., Chen, L. B. (
40. 1988) Use of rhodamine 123 to investigate alterations in mitochondrial activity in isolated mouse liver mitochondria. Biochem. Biophys. Res. Commun. 151, 568–573.
< , J. E., Vargas, J. L., Kimler, B. F., Hernandez-Yago, J., Grisolia, S. (https://doi.org/10.1016/0006-291X(88)90632-8>
41. 2013) Pyruvate as a pivot point for oncogene-induced senescence. Cell 153, 1429–1430.
< , B. A., Vander Heiden, M. G. (https://doi.org/10.1016/j.cell.2013.06.001>
<PubMed>
42. 2009) Reverse Warburg effect. Aerobic glycolysis and cancer associated fibroblasts and their tumor stroma. Cell Cycle 8, 3984–4001.
< , S., Whitaker-Menezes, D., Castello-Cros, R., Flomenberg, N., Witkiewicz, A. K., Frank, P. G., Casimiro, M. C., Wang, C., Fortina, P., Addya, S., Pestell, R. G., Martinez-Outschoorn, U. E., Sotgia, F., Lisanti, M. P. (https://doi.org/10.4161/cc.8.23.10238>
43. 2010a) The autophagic tumor stroma model of cancer. Role of oxidative stress and ketone production in fuelling tumor cell metabolism. Cell Cycle 9, 3485–3505.
< , S., Tsirigos, A., Migneco, G., Whitaker-Menezes, D., Chiavarina, B., Flomenberg, N., Frank, P. G., Casimiro, M. C., Wang, C., Pestell, R. G., Martinez-Outschoorn, U. E., Howell, A., Sotgia, F., Lisanti, M. P. (https://doi.org/10.4161/cc.9.17.12721>
<PubMed>
44. 2010b) Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect”. A transcriptional informatics analysis with validation. Cell Cycle 9, 2201–2219.
< , S., Tsirigos, A., Vera, I., Flomenberg, N., Frank, P. G., Casimiro, M. C., Wang, C., Fortina, P., Addya, S., Pestell, R. G., Martinez-Outschoorn, U. E., Sotgia, F., Lisanti, M. P. (https://doi.org/10.4161/cc.9.11.11848>
45. 1981) Life cycle alterations of the micro-dielectrophoretic effects of cells. J. Biol. Phys. 9, 133–154.
< , H. A., Braden, T., Robinson, S., Piclardi, J., Pohl, D. G. (https://doi.org/10.1007/BF01988247>
46. 2012) Physical aspects of biological activity and cancer. AIP Adv. 2, 011207-1–11.
< , J. (https://doi.org/10.1063/1.3699057>
47. 2001) Electromagnetic activity of yeast cells in the M phase. Electro Magnetobiol. 20, 371–396.
< , J., Hašek, J., Jelínek, F., Šaroch, J., Palán, B. (https://doi.org/10.1081/JBC-100108577>
48. 2011) Cancer physics: diagnostics based on damped cellular elastoelectrical vibrations in microtubules. Eur. Biophys. J. 40, 747–759.
< , J., Vedruccio, C., Cifra, M., Kučera, O. (https://doi.org/10.1007/s00249-011-0688-1>
49. 2012a) Targeting mitochondria for cancer treatment. Eur. J. Oncol. 17, 23–36.
, J., Cifra, M., Jandová, A., Kučera, O., Šrobár, F., Vrba, J., Vrba, J. Jr., Kobilková, J. (
50. 2012b) Mitochondrial metabolism – Neglected link of cancer transformation and treatment. Prague Med. Rep. 113, 81–94.
< , J., Jandová, A., Nedbalová, M., Jelínek, F., Cifra, M., Kučera, O., Havelka, D., Vrba, J., Vrba, J. Jr., Čoček, A., Kobilková, J. (https://doi.org/10.14712/23362936.2015.24>
51. Pokorný, J., Foletti, A., Kobilková, J., Jandová, A., Vrba, J., Vrba, J. Jr., Nedbalová, M., Čoček, A., Danani, A., Tuszyński, J. A. (2013a) Biophysical insights into cancer transformation and treatment. Scientific World Journal 2013, doi:10.1155/2013/195028.
<https://doi.org/10.1155/2013/195028>
<PubMed>
52. 2013b) Postulates on electromagnetic activity in biological systems and cancer. Integr. Biol. (Camb.) 5, 1439–1446.
< , J., Pokorný, J., Kobilková, J. (https://doi.org/10.1039/c3ib40166a>
53. Pokorný, J., Pokorný, J., Kobilková, J., Jandová, A., Vrba, J., Vrba, J. Jr. (2014) Cancer – Pathological breakdown of coherent energy states. Biophys. Rev. Lett. 9, doi:10.1142/S1793048013300077.
<https://doi.org/10.1142/S1793048013300077>
54. 1979) Ionophores. Methods Enzymol. 55, 435–454.
< , P. W. (https://doi.org/10.1016/0076-6879(79)55058-7>
55. 2013) Atomic water channel controlling remarkable properties of a single brain microtubule: Correlating single protein to its supramolecular assembly. Biosens. Bioelectron. 47, 141–148.
< , S., Ghosh, S., Ghosh, B., Aswani, K., Hirata, K., Fujita, D., Bandyopadhyay, A. (https://doi.org/10.1016/j.bios.2013.02.050>
56. 1979) Myofibroblasts in the stroma of invasive and metastatic carcinoma. Am. J. Surg. Pathol. 3, 525–533.
< , T. A., Lagacé, R., Schürch, W., Tremblay, G. (https://doi.org/10.1097/00000478-197912000-00005>
57. 1967) Changes of the isoenzyme of lactate dehydrogenase acid (LDH 5) in blood serum in course of cytostatic treatment of gynecological cancer. Cesk. Gynekol. 32, 14–17. (in Czech)
, V., Trnková, M., Škramovský, V., Jandová, A., Novotná, J. (
58. 2012) Mitochondrial metabolism in cancer metastasis. Visualizing tumor cell mitochondria and the “reverse Warburg effect” in positive lymph node tissue. Cell Cycle 11, 1445–1454.
< , F., Whitaker-Menezes, D., Martinez-Outschoorn, U. E., Flomenberg, N., Birbe, R. C., Witkiewicz, A. K., Howell, A., Philp, N. J., Pestell, R. G., Lisanti, M. P. (https://doi.org/10.4161/cc.19841>
<PubMed>
59. 2011) The tissue organization field theory of cancer: A testable replacement for the somatic mutation theory. Bioessays 33, 332–340.
< , A. M., Sonnenschein, C. (https://doi.org/10.1002/bies.201100025>
<PubMed>
60. 2010) Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Res. Treat. 120, 253–260.
< , R. C., Fadia, M., Dahlstrom, J. E., Parish, C. R., Board, P. G., Blackburn, A. C. (https://doi.org/10.1007/s10549-009-0435-9>
61. 2007) “Nanosized voltmeter” enables cellular-wide electric field mapping. Biophys. J. 93, 1163–1174.
< , K. M., Kopelman, R., Philbert, M. A. (https://doi.org/10.1529/biophysj.106.092452>
<PubMed>
62. Vedruccio, C., Meessen, A. (2004) EM cancer detection by means of non-linear resonance interaction. In: Proceedings PIERS, Progress in Electromagnetic Research Symposium, Pisa, Italy, March 28–31, 2004, pp. 909–912.
63. 1956) On the origin of cancer cells. Science 123, 309–314.
< , O. (https://doi.org/10.1126/science.123.3191.309>
64. 1924) Über den Stoffwechsel der Carcinomzelle. Biochem. Z. 152, 309–344.
, O., Posener, K., Negelein, E. (
65. 2012) Using the “reverse Warburg effect” to identify high-risk breast cancer patients. Stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 11, 1108–1117.
< , A. K., Whitaker-Menezes, D., Dasgupta, A., Philp, N. J., Lin, Z., Gandara, R., Sneddon, S., Martinez-Outschoorn, U. E., Sotgia, F., Lisanti, M. P. (https://doi.org/10.4161/cc.11.6.19530>
<PubMed>
66. 1987) Revertants of v-fos-transformed fibroblasts have mutations ion cellular genes essential for transformation by other oncogenes. Cell 51, 357–369.
< , H., Latreille, J., Jolicoeur, P. (https://doi.org/10.1016/0092-8674(87)90632-5>
67. 2003) Long-range forces extending from polymer-gel surfaces. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68, 031408.
< , J. M., Pollack, G. H. (https://doi.org/10.1103/PhysRevE.68.031408>
68. Zheng, J. M., Pollack, G. H. (2006) Solute exclusion and potential distribution near hydrophilic surfaces. In: Water and the Cell, eds. Pollack, G. H., Cameron, I., Wheatley, D. N., pp. 165–174, Springer, Dordrecht.