Prague Med. Rep. 2015, 116, 5-15
https://doi.org/10.14712/23362936.2015.40
Importance of Choline as Essential Nutrient and Its Role in Prevention of Various Toxicities
References
1. , T. V., Powell, C. L., Pavliv, O., Tryndyak, V. P., Pogribny, I. P. (2008) Induction of oxidative stress and DNA damage in rat brain by a folate/methyl-deficient diet. Brain Res. 1237, 44–51.
<https://doi.org/10.1016/j.brainres.2008.07.073>
2. , M. S., Sun, M., Ko, J. (2012) Vitamin A, folate, and choline as a possible preventive intervention to fetal alcohol syndrome. Med. Hypotheses 78, 489–493.
<https://doi.org/10.1016/j.mehy.2012.01.014>
3. , V., Paul, T., Devasagayam, A. (2009) Interaction between cytotoxic effects of radiation and folate deficiency in relation to choline reserves. Toxicology 255, 91–99.
<https://doi.org/10.1016/j.tox.2008.10.008>
4. , J. K., Zeisel, S. H., Wurtman, R. J. (1985) Developmental changes in the activity of phosphatidylethanolamine N-methyltransferases in rat brain. Biochem. J. 232, 505–511.
<https://doi.org/10.1042/bj2320505>
<PubMed>
5. , W.-L., Holmes-Mc Nary, M. Q., Mar, M.-H., Lien, E. L., Zeisel, S. H. (1996) Bioavailability of choline and choline esters from milk in rat pups. J. Nutr. Biochem. 7, 457–464.
<https://doi.org/10.1016/0955-2863(96)00079-4>
6. , E. L., Wurtman, R. J. (1975) Brain acetylcholine: increase after systemic choline administration. Life Sci. 16(7), 1095–1102.
<https://doi.org/10.1016/0024-3205(75)90194-0>
7. , K. D., Zeisel, S. H. (2012) Choline metabolism provides novel insights into non-alcoholic fatty liver disease and its progression. Curr. Opin. Gastroenterol. 28(2), 159–165.
<https://doi.org/10.1097/MOG.0b013e32834e7b4b>
<PubMed>
8. , C. N., Albright, C. D., Mar, M. H., Song, J., Zeisel, S. H. (2003) Choline availability during embryonic development alters progenitor cell mitosis in developing mouse hippocampus. J. Nutr. 133(11), 3614–3618.
<https://doi.org/10.1093/jn/133.11.3614>
<PubMed>
9. , K. A., Kozyreva, O. G., Song, J., Galanko, J. A., Fischer, L. M., Zeisel, S. H. (2006) Common genetic polymorphisms affect the human requirement for the nutrient choline. FASEB J. 20, 1336–1344.
<https://doi.org/10.1096/fj.06-5734com>
<PubMed>
10. , J., Moureau, S., Drogaris, P., O’Connell, E., Abshiru, N., Verreault, A., Thibault, P., Grenon, M., Lowndes, N. F. (2011) Regulation of the DNA damage response and gene expression by the Dot1L histone methyltransferase and the 53Bp1 tumour suppressor. PLoS One 6(2), e14714.
<https://doi.org/10.1371/journal.pone.0014714>
<PubMed>
11. Food and Nutrition Board (Institute of Medicine) (1998) Dietary Reference Intakes for Folate, Thiamin, Riboflavin, Niacin, Vitamin B12, Pantothenic Acid, Biotin and Choline. National Academy Press, Washington, D.C.
12. , A. L., Li, Q., Dong, Z. H., Huang, S. J., Wang, Y. X., Sun, M. J. (2004) Alternative therapy of Alzheimer’s disease via supplementation with choline acetyltransferase. Neurosci. Lett. 368, 258–262.
<https://doi.org/10.1016/j.neulet.2004.05.116>
13. , S. C., Mar, M. H., Zeisel, S. H. (1995) Choline distribution and metabolism in pregnant rats and fetuses are influenced by the choline content of the maternal diet. J. Nutr. 125(11), 2851–2858.
14. , M. J., Gibson, E. M., Kirby, E. D., Mellott, T. J., Blusztajn, J. K., Williams, C. L. (2007) Prenatal choline availability modulates hippocampal neurogenesis and neurogenic responses to enriching experiences in adult female rats. Eur. J. Neurosci. 25(8), 2473–2482.
<https://doi.org/10.1111/j.1460-9568.2007.05505.x>
<PubMed>
15. , M. J., Adams, R. S., McClurg, L. (2012) Supplemental dietary choline during development exerts antidepressant-like effects in adult female rats. Brain Res. 1443, 52–63.
<https://doi.org/10.1016/j.brainres.2012.01.018>
<PubMed>
16. , D. R., Wedeking, P. W., Wang, P. F. (1974) Increase in tissue concentration of acetylcholine in guinea pigs in vivo induced by administration of choline. Life Sci. 14(5), 921–927.
<https://doi.org/10.1016/0024-3205(74)90081-2>
17. , H. H., Batres-Marquez, S. P., Carriquiry, A., Schalinske, K. L. (2007) Choline in the diets of the U.S. population: NHANES, 2003–2004. FASEB J. 21, lb219.
18. , D., Betzing, H. (1976) Intestinal absorption of polyunsaturated phosphatidyl-choline in the rat. Hoppe Seylers Z. Physiol. Chem. 357, 1321–1331.
<https://doi.org/10.1515/bchm2.1976.357.2.1321>
19. , Q., Guo-Ross, S., Lewis, D. V., Turner, D., White, A. M., Wilson, W. A., Swartzwelder, H. S. (2004) Dietary prenatal choline supplementation alters postnatal hippocampal structure and function. J. Neurophysiol. 191, 1545–1555.
<https://doi.org/10.1152/jn.00785.2003>
20. , Z., Vance, D. (2008) Phosphatidylcholine and choline homeostasis. J. Lipid Res. 49, 1187–1194.
<https://doi.org/10.1194/jlr.R700019-JLR200>
21. , J. E., Dunne, P. D., O’Neill, K. M., Meehan, R. R., McDaid, J. R., Walsh, C. P. (2011) DNMT1 deficiency triggers mismatch repair defects in human cells through depletion of repair protein levels in a process involving the DNA damage response. Hum. Mol. Genet. 20, 3241–3255.
<https://doi.org/10.1093/hmg/ddr236>
22. LSRO/FASEB (Life Sciences Research Office/Federation of American Societies for Experimental Biology) (1981) Effects of consumption of choline and lecithin on neurological and cardiovascular systems. Report PB-82-133257.
23. , W. H., Williams, C. L. (2003) Metabolic imprinting of choline by its availability during gestation: Implications for memory and attentional processing across the lifespan. Neurosci. Biobehav. Rev. 27, 385–399.
<https://doi.org/10.1016/S0149-7634(03)00069-1>
24. , T. J., Follettie, M. T., Diesl, V., Hill, A. A., Lopez-Coviella, I., Blusztago, J. K. (2007) Prenatal choline availability modulated hippocampal and cerebral cortical gene expression. FASEB J. 21, 1311–1323.
<https://doi.org/10.1096/fj.06-6597com>
25. , N., Mellott, T. J., Berger-Sweeney, J. E. (2008) Effects of postnatal dietary choline supplementation on motor regional brain volume and growth factor expression in a mouse model of Rett syndrome. Brain Res. 1237, 101–109.
<https://doi.org/10.1016/j.brainres.2008.08.042>
26. , R. M., Blusztajn, J. K., Pittas, A. G., Slack, B. E., Growdon, J. H., Wurtman, R. J. (1992) Evidence for a membrane defect in Alzheimer disease brain. Proc. Natl. Acad. Sci. U. S. A. 89, 1671–1675.
<https://doi.org/10.1073/pnas.89.5.1671>
<PubMed>
27. , G., Dalgh, M., Repetto, M. (2007) Oxidative damage lipid peroxidation in the kidney of choline-deficient rats. Front. Biosci. 12, 1174–1183.
<https://doi.org/10.2741/2135>
28. , I. P., Shpyleva, S. I., Muskhelishvili, L., Bagnyukova, T. V., James, S. J., Beland, F. A. (2009) Role of DNA damage and alterations in cytosine DNA methylation in rat liver carcinogenesis induced by a methyl-deficient diet. Mutat. Res. 669, 56–62.
<https://doi.org/10.1016/j.mrfmmm.2009.05.003>
29. , C. L., Kosyk, O., Bradford, B. U., Parker, J. S., Lobenhofer, E. K., Denda, A., Uematsu, F., Nakae, D., Rusyn, L. (2005) Temporal correlation of pathology and DNA damage with gene expression in a choline-deficient model of rat liver injury. Hepatology 42, 1137–1147.
<https://doi.org/10.1002/hep.20910>
30. , M. G., Ossani, G., Monserrat, A. J., Boveris, A. (2010) Oxidative damage: The biochemical mechanism of cellular injury and necrosis in choline deficiency. Exp. Mol. Pathol. 88, 143–149.
<https://doi.org/10.1016/j.yexmp.2009.11.002>
31. , M., Song, J., Niculescu, M. D., da Costa, K. A., Randall, T. A., Zeisel, S. H. (2007) Phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is induced by estrogen in human and mouse primary hepatocytes. FASEB J. 21, 2622–2632.
<https://doi.org/10.1096/fj.07-8227com>
<PubMed>
32. , M. E., da Costa, K. A., Galanko, J. A., Patel, M., Davis, I. J., Zeisel, S. H. (2011) Aberrant estrogen regulation of PEMT results in choline deficiency-associated liver dysfunction. J. Biol. Chem. 286, 1649–1658.
<https://doi.org/10.1074/jbc.M110.106922>
<PubMed>
33. , R. C., Huang, X., Moll, A. R., Brunt, E. M., Crawford, P. A. (2013) Role of choline deficiency in the fatty liver phenotype of mice fed a low protein, very low carbohydrate ketogenic diet. PLoS One 8(8), e74806.
<https://doi.org/10.1371/journal.pone.0074806>
<PubMed>
34. , G. M., Carmichael, S. L., Yang, W., Selvin, S., Schaffer, D. M. (2004) Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am. J. Epidemiol. 160, 102–109.
<https://doi.org/10.1093/aje/kwh187>
35. , G. M., Carmichael, S. L., Laurent, C., Rasmussen, S. A. (2006) Maternal nutrient intakes and risk of orofacial clefts. Epidemiology 17, 285–291.
<https://doi.org/10.1097/01.ede.0000208348.30012.35>
36. , Y., Hasegawa, H., Ogawa, K., Tagoku, K., Hashimoto, T. (2006) Distinct effects of folate and choline deficiency on plasma kinetics of methionine and homocysteine in rats. Metabolism 55, 899–906.
<https://doi.org/10.1016/j.metabol.2006.02.017>
37. , E. P. (1997) Essential nature of choline with implications for total parental nutrition. J. Am. Diet. Assoc. 97(6), 639–646, 649.
<https://doi.org/10.1016/S0002-8223(97)00161-2>
38. , G., Cui, Y., Han, Z. J., Xia, H. F., Ma, X. (2012) Effects of choline on sodium arsenite-induced neural tube defects in chick embryos. Food Chem. Toxicol. 50(12), 4364–4374.
<https://doi.org/10.1016/j.fct.2012.08.023>
39. , K. E., Adams, C. E., Mellott, T. J., Robbins, E., Kisley, M. A. (2008) Perinatal choline deficiency produces abnormal sensory inhibition in Sprague-Dawley rats. Brain Res. 1237, 84–90.
<https://doi.org/10.1016/j.brainres.2008.08.047>
<PubMed>
40. , J. D., Abou, E. J., Dominguez, H. D. (2009) Prenatal choline supplementation mitigates the adverse effects of prenatal alcohol exposure on development in rats. Neurotoxicol. Teratol. 31(5), 303–311.
<https://doi.org/10.1016/j.ntt.2009.07.002>
<PubMed>
41. , J. D., Idrus, N. M., Monk, B. R., Dominguez, H. D. (2010) Prenatal choline supplementation mitigates behavioral alterations associated with prenatal alcohol exposure in rats. Birth Defects Res. A Clin. Mol. Teratol. 88(10), 827–837.
<https://doi.org/10.1002/bdra.20713>
<PubMed>
42. , B. C., Kolodny, N. H., Nag, N., Berger-Sweeney, J. E. (2009) Neurochemical changes in a mouse model of Rett syndrome: Changes over time and in response to perinatal choline nutritional supplementation. J. Neurochem. 108, 361–371.
<https://doi.org/10.1111/j.1471-4159.2008.05768.x>
43. , L. (1986) Neurochemical effects of choline supplementation. Can. J. Physiol. Pharmacol. 64(3), 329–333.
<https://doi.org/10.1139/y86-054>
44. , S. H. (2006a) Choline: Critical role during fetal development and dietary requirements in adults. Annu. Rev. Nutr. 26, 229–250.
<https://doi.org/10.1146/annurev.nutr.26.061505.111156>
<PubMed>
45. , S. H. (2006b) The fetal origins of memory: The role of dietary choline in optimal brain development. J. Pediatr. 149, S131–S136.
<https://doi.org/10.1016/j.jpeds.2006.06.065>
<PubMed>
46. , S. H. (2012) Dietary choline deficiency causes DNA strand breaks and alters epigenetic marks on DNA and histones. Mutat. Res. 733, 34–38.
<https://doi.org/10.1016/j.mrfmmm.2011.10.008>
<PubMed>
47. , S. H., Blusztajn, J. K. (1994) Choline and human nutrition. Annu. Rev. Nutr. 14, 269–296.
<https://doi.org/10.1146/annurev.nu.14.070194.001413>
48. , S. H., da Costa, K. A. (2009) Choline: An essential nutrient for public health. Nutr. Rev. 67(11), 615–623.
<https://doi.org/10.1111/j.1753-4887.2009.00246.x>
<PubMed>
49. , S. H., Char, D., Sheard, N. F. (1986) Choline, phosphatidylcholine and sphingomyelin in human and bovine milk and infant formulas. J. Nutr. 116, 50–58.
<https://doi.org/10.1093/jn/116.1.50>
50. , S. H., Mar, M. H., Howe, J., Holden, J. (2003) Concentrations of choline-containing compounds and betaine in common foods. J. Nutr. 133, 1302–1307.
<https://doi.org/10.1093/jn/133.5.1302>


