Prague Med. Rep. 2015, 116, 87-111

https://doi.org/10.14712/23362936.2015.49

Adipose Tissue as an Endocrine Organ: An Update on Pro-inflammatory and Anti-inflammatory Microenvironment

Kvido Smitka, Dana Marešová

Institute of Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic

Received December 12, 2014
Accepted June 1, 2015

References

1. Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., Flier, J. S. (1996) Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252. <https://doi.org/10.1038/382250a0>
2. Anderlová, K., Křemen, J., Doležalová, R., Housová, J., Haluzíková, D., Kunešová, M., Haluzík, M. (2006) The influence of very-low-calorie-diet on serum leptin, soluble leptin receptor, adiponectin and resistin levels in obese women. Physiol. Res. 55, 277–283.
3. Arnoldussen, I. A., Kiliaan, A. J., Gustafson, D. R. (2014) Obesity and dementia: Adipokines interact with the brain. Eur. Neuropsychopharmacol. 24, 1982–1999. <https://doi.org/10.1016/j.euroneuro.2014.03.002> <PubMed>
4. Beatty, A. L., Zhang, M. H., Ku, I. A., Na, B., Schiller, N. B., Whooley, M. A. (2012) Adiponectin is associated with increased mortality and heart failure in patients with stable ischemic heart disease: data from the Heart and Soul Study. Atherosclerosis 220, 587–592. <https://doi.org/10.1016/j.atherosclerosis.2011.11.038> <PubMed>
5. Becerra, S. P. (1997) Structure-function studies on PEDF. A noninhibitory serpin with neurotrophic activity. Adv. Exp. Med. Biol. 425, 223–237. <https://doi.org/10.1007/978-1-4615-5391-5_21>
6. Bensaid, M., Gary-Bobo, M., Esclangon, A., Maffrand, J. P., Le Fur, G., Oury-Donat, F., Soubrié, P. (2003) The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol. Pharmacol. 63, 908–914. <https://doi.org/10.1124/mol.63.4.908>
7. Bjørbaek, C., Elmquist, J. K., Frantz, J. D., Shoelson, S. E., Flier, J. S. (1998) Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol. Cell 1, 619–625. <https://doi.org/10.1016/S1097-2765(00)80062-3>
8. Bjørbaek, C., Kahn, B. B. (2004) Leptin signaling in the central nervous system and the periphery. Recent Prog. Horm. Res. 59, 305–331. <https://doi.org/10.1210/rp.59.1.305>
9. Booth, A., Magnuson, A., Foster, M. (2014) Detrimental and protective fat: body fat distribution and its relation to metabolic disease. Horm. Mol. Biol. Clin. Investig. 7, 13–27.
10. Boura-Halfon, S., Zick, Y. (2009) Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 296, E581–E591. <https://doi.org/10.1152/ajpendo.90437.2008>
11. Brochu-Gaudreau, K., Rehfeldt, C., Blouin, R., Bordignon, V., Murphy, B. D., Palin, M. F. (2010) Adiponectin action from head to toe. Endocrine 37, 11–32. <https://doi.org/10.1007/s12020-009-9278-8>
12. Brunetti, L., Orlando, G., Ferrante, C., Recinella, L., Leone, S., Chiavaroli, A., Di Nisio, C., Shohreh, R., Manippa, F., Ricciuti, A., Vacca, M. (2013) Orexigenic effects of omentin-1 related to decreased CART and CRH gene expression and increased norepinephrine synthesis and release in the hypothalamus. Peptides 44, 66–74. <https://doi.org/10.1016/j.peptides.2013.03.019>
13. Bruun, J. M., Lihn, A. S., Verdich, C., Pedersen, S. B., Toubro, S., Astrup, A., Richelsen, B. (2003) Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am. J. Physiol. Endocrinol. Metab. 285, E527–E533. <https://doi.org/10.1152/ajpendo.00110.2003>
14. Cai, J., Jiang, W. G., Grant, M. B., Boulton, M. (2006) Pigment epithelium-derived factor inhibits angiogenesis via regulated intracellular proteolysis of vascular endothelial growth factor receptor 1. J. Biol. Chem. 281, 3604–3613. <https://doi.org/10.1074/jbc.M507401200>
15. Calabro, P., Samudio, I., Willerson, J. T., Yeh, E. T. (2004) Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation 110, 3335–3340. <https://doi.org/10.1161/01.CIR.0000147825.97879.E7>
16. Campfield, L. A., Smith, F. J., Guisez, Y., Devos, R., Burn, P. (1995) Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269, 546–549. <https://doi.org/10.1126/science.7624778>
17. Cao, H. (2014) Adipocytokines in obesity and metabolic disease. J. Endocrinol. 220, T47–T59. <https://doi.org/10.1530/JOE-13-0339> <PubMed>
18. Carnagarin, R., Dharmarajan, A. M., Dass, C. R. (2015) PEDF-induced alteration of metabolism leading to insulin resistance. Mol. Cell. Endocrinol. 401C, 98–104. <https://doi.org/10.1016/j.mce.2014.11.006>
19. Chan, J. L., Heist, K., DePaoli, A. M., Veldhuis, J. D., Mantzoros, C. S. (2003) The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J. Clin. Invest. 111, 1409–1421. <https://doi.org/10.1172/JCI200317490>
20. Chavan, S. S., Hudson, L. K., Li, J. H., Ochani, M., Harris, Y., Patel, N. B., Katz, D., Scheinerman, J. A., Pavlov, V. A., Tracey, K. J. (2012) Identification of pigment epithelium-derived factor as an adipocyte-derived inflammatory factor. Mol. Med. 18, 1161–1168.
21. Chen, M. P., Chung, F. M., Chang, D. M., Tsai, J. C., Huang, H. F., Shin, S. J., Lee, Y. J. (2006) Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 91, 295–299. <https://doi.org/10.1210/jc.2005-1475>
22. Cheng, A., Uetani, N., Simoncic, P. D., Chaubey, V. P., Lee-Loy, A., McGlade, C. J., Kennedy, B. P., Tremblay, M. L. (2002) Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev. Cell 4, 497–503. <https://doi.org/10.1016/S1534-5807(02)00149-1>
23. Choy, J. C., Granville, D. J., Hunt, D. W., McManus, B. M. (2001) Endothelial cell apoptosis: biochemical characteristics and potential implications for atherosclerosis. J. Mol. Cell. Cardiol. 33, 1673–1690. <https://doi.org/10.1006/jmcc.2001.1419>
24. Christensen, R., Kristensen, P. K., Bartels, E. M., Bliddal, H., Astrup, A. (2007) Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370, 1706–1713. <https://doi.org/10.1016/S0140-6736(07)61721-8>
25. Cluny, N. L., Vemuri, V. K., Chambers, A. P., Limebeer, C. L., Bedard, H., Wood, J. T., Lutz, B., Zimmer, A., Parker, L. A., Makriyannis, A., Sharkey, K. A. (2010) A novel peripherally restricted cannabinoid receptor antagonist, AM6545, reduces food intake and body weight, but does not cause malaise, in rodents. Br. J. Pharmacol. 161, 629–642. <https://doi.org/10.1111/j.1476-5381.2010.00908.x> <PubMed>
26. Crowe, S., Wu, L. E., Economou, C., Turpin, S. M., Matzaris, M., Hoehn, K. L., Hevener, A. L., James, D. E., Duh, E. J., Watt, M. J. (2009) Pigment epithelium-derived factor contributes to insulin resistance in obesity. Cell Metab. 10, 40–47. <https://doi.org/10.1016/j.cmet.2009.06.001>
27. de Souza Batista, C. M., Yang, R. Z., Lee, M. J., Glynn, N. M., Yu, D. Z., Pray, J., Ndubuizu, K., Patil, S., Schwartz, A., Kligman, M., Fried, S. K., Gong, D. W., Shuldiner, A. R., Pollin, T. I., McLenithan, J. C. (2007) Omentin plasma levels and gene expression are decreased in obesity. Diabetes 56, 1655–1661. <https://doi.org/10.2337/db06-1506>
28. Després, J. P., Golay, A., Sjöström, L. (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. Rimonabant in Obesity-Lipids Study Group. N. Engl. J. Med. 353, 2121–2134. <https://doi.org/10.1056/NEJMoa044537>
29. Després, J. P., Ross, R., Boka, G., Alméras, N., Lemieux, I. (2009) Effect of rimonabant on the high-triglyceride/low-HDL-cholesterol dyslipidemia, intraabdominal adiposity, and liver fat: the ADAGIO-Lipids trial. ADAGIO-Lipids Investigators. Arterioscler. Thromb. Vasc. Biol. 29, 416–423. <https://doi.org/10.1161/ATVBAHA.108.176362>
30. Dolezalova, R., Lacinova, Z., Dolinkova, M., Kleiblova, P., Haluzikova, D., Housa, D., Papezova, H., Haluzik, M. (2007) Changes of endocrine function of adipose tissue in anorexia nervosa: comparison of circulating levels versus subcutaneous mRNA expression. Clin. Endocrinol. (Oxf.) 67, 674–678. <https://doi.org/10.1111/j.1365-2265.2007.02944.x>
31. Dostálová, I., Smitka, K., Papežová, H., Kvasničková, H., Nedvídková, J. (2006) The role of adiponectin in increased insulin sensitivity of patients with anorexia nervosa. Vnitr. Lek. 52, 887–890.
32. Dostálová, I., Smitka, K., Papežová, H., Kvasničková, H., Nedvídková, J. (2007) Increased insulin sensitivity in patients with anorexia nervosa: the role of adipocytokines. Physiol. Res. 56, 587–594.
33. Dostálová, I., Sedláčková, D., Papežová, H., Nedvídková, J., Haluzík, M. (2009) Serum visfatin levels in patients with anorexia nervosa and bulimia nervosa. Physiol. Res. 58, 903–907.
34. Dubern, B., Clement, K. (2012) Leptin and leptin receptor-related monogenic obesity. Biochimie 94, 2111–2115. <https://doi.org/10.1016/j.biochi.2012.05.010>
35. Enomoto, T., Ohashi, K., Shibata, R., Higuchi, A., Maruyama, S., Izumiya, Y., Walsh, K., Murohara, T., Ouchi, N. (2011) Adipolin/C1qdc2/CTRP12 protein functions as an adipokine that improves glucose metabolism. J. Biol. Chem. 286, 34552–34558. <https://doi.org/10.1074/jbc.M111.277319> <PubMed>
36. Esteve Ràfols, M. (2014) Adipose tissue: cell heterogeneity and functional diversity. Endocrinol. Nutr. 61, 100–112. <https://doi.org/10.1016/j.endonu.2013.03.011>
37. Exley, M., Hand, L. E., O’Shea, D., Lynch, L. (2014) The interplay between the immune system and adipose in obesity. J. Endocrinol. 223, R41–R48. <https://doi.org/10.1530/JOE-13-0516>
38. Fain, J. N., Madan, A. K., Hiler, M. L., Cheema, P., Bahouth, S. W. (2004) Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145, 2273–2282. <https://doi.org/10.1210/en.2003-1336>
39. Fain, J. N., Sacks, H. S., Buehrer, B., Bahouth, S. W., Garrett, E., Wolf, R. Y., Carter, R. A., Tichansky, D. S., Madan, A. K. (2008) Identification of omentin mRNA in human epicardial adipose tissue: comparison to omentin in subcutaneous, internal mammary artery periadventitial and visceral abdominal depots. Int. J. Obes. (Lond.) 32, 810–815. <https://doi.org/10.1038/sj.ijo.0803790>
40. Famulla, S., Lamers, D., Hartwig, S., Passlack, W., Horrighs, A., Cramer, A., Lehr, S., Sell, H., Eckel, J. (2011) Pigment epithelium-derived factor (PEDF) is one of the most abundant proteins secreted by human adipocytes and induces insulin resistance and inflammatory signaling in muscle and fat cells. Int. J. Obes. (Lond.) 35, 762–772. <https://doi.org/10.1038/ijo.2010.212>
41. Farooqi, I. S., O’Rahilly, S. (2005) Monogenic obesity in humans. Annu. Rev. Med. 56, 443–458. <https://doi.org/10.1146/annurev.med.56.062904.144924>
42. Farooqi, I. S., Jebb, S. A., Langmack, G., Lawrence, E., Cheetham, C. H., Prentice, A. M., Hughes, I. A., McCamish, M. A., O’Rahilly, S. (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884. <https://doi.org/10.1056/NEJM199909163411204>
43. Farooqi, I. S., Matarese, G., Lord, G. M., Keogh, J. M., Lawrence, E., Agwu, C., Sanna, V., Jebb, S. A., Perna, F., Fontana, S., Lechler, R. I., DePaoli, A. M., O’Rahilly, S. (2002) Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093–1103. <https://doi.org/10.1172/JCI0215693>
44. Fasshauer, M., Klein, J., Neumann, S., Eszlinger, M., Paschke, R. (2002) Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 290, 1084–1089. <https://doi.org/10.1006/bbrc.2001.6307>
45. Feng, J. Q., Guo, F. J., Jiang, B. C., Zhang, Y., Frenkel, S., Wang, D. W., Tang, W., Xie, Y., Liu, C. J. (2010) Granulin epithelin precursor: a bone morphogenic protein 2-inducible growth factor that activates Erk1/2 signaling and JunB transcription factor in chondrogenesis. FASEB J. 24, 1879–1892. <https://doi.org/10.1096/fj.09-144659> <PubMed>
46. Flegal, K. M., Kit, B. K., Orpana, H., Graubard, B. I. (2013) Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309, 71–82. <https://doi.org/10.1001/jama.2012.113905> <PubMed>
47. Flier, J. S. (2004) Obesity wars: molecular progress confronts an expanding epidemic. Cell 116, 337–350. <https://doi.org/10.1016/S0092-8674(03)01081-X>
48. Fonseca-Alaniz, M. H., Takada, J., Alonso-Vale, M. I., Lima, F. B. (2007) Adipose tissue as an endocrine organ: from theory to practice. J. Pediatr. 83, S192–S203. <https://doi.org/10.1590/S0021-75572007000700011>
49. Fontana, L., Eagon, J. C., Trujillo, M. E., Scherer, P. E., Klein, S. (2007) Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56, 1010–1013. <https://doi.org/10.2337/db06-1656>
50. Friedman, J. (2014) 20 years of leptin: An overview. J. Endocrinol. 223, T1–T8. <https://doi.org/10.1530/JOE-14-0405>
51. Fukuhara, A., Matsuda, M., Nishizawa, M., Segawa, K., Tanaka, M., Kishimoto, K., Matsuki, Y., Murakami, M., Ichisaka, T., Murakami, H., Watanabe, E., Takagi, T., Akiyoshi, M., Ohtsubo, T., Kihara, S., Yamashita, S., Makishima, M., Funahashi, T., Yamanaka, S., Hiramatsu, R., Matsuzawa, Y., Shimomura, I. (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307, 426–430. <https://doi.org/10.1126/science.1097243>
52. Galic, S., Oakhill, J. S., Steinberg, G. R. (2010) Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. 316, 129–139. <https://doi.org/10.1016/j.mce.2009.08.018>
53. Gan, L., Guo, K., Cremona, M. L., McGraw, T. E., Leibel, R. L., Zhang, Y. (2012) TNF-α up-regulates protein level and cell surface expression of the leptin receptor by stimulating its export via a PKC-dependent mechanism. Endocrinology 153, 5821–5833. <https://doi.org/10.1210/en.2012-1510> <PubMed>
54. Gavrila, A., Chan, J. L., Yiannakouris, N., Kontogianni, M., Miller, L. C., Orlova, C., Mantzoros, C. S. (2003) Serum adiponectin levels are inversely associated with overall and central fat distribution but are not directly regulated by acute fasting or leptin administration in humans: cross-sectional and interventional studies. J. Clin. Endocrinol. Metab. 88, 4823–4831. <https://doi.org/10.1210/jc.2003-030214>
55. Ge, Q., Maury, E., Rycken, L., Gérard, J., Noël, L., Detry, R., Navez, B., Brichard, S. M. (2013) Endocannabinoids regulate adipokine production and the immune balance of omental adipose tissue in human obesity. Int. J. Obes. (Lond.) 37, 874–880. <https://doi.org/10.1038/ijo.2012.123>
56. Gonzalez-Gay, M. A., De Matias, J. M., Gonzalez-Juanatey, C., Garcia-Porrua, C., Sanchez-Andrade, A., Martin, J., Llorca, J. (2006) Anti-tumor necrosis factor-alpha blockade improves insulin resistance in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 24, 83–86.
57. Hainer, V., Aldhoon-Hainerová, I. (2013) Obesity paradox does exist. Diabetes Care 36, S276–S281 (Suppl. 2). <https://doi.org/10.2337/dcS13-2023> <PubMed>
58. Hathout, E. H., Sharkey, J., Racine, M., Ahn, D., Mace, J. W., Saad, M. F. (1999) Changes in plasma leptin during the treatment of diabetic ketoacidosis. J. Clin. Endocrinol. Metab. 84, 4545–4548. <https://doi.org/10.1210/jcem.84.12.6184>
59. He, Z., Bateman, A. (2003) Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J. Mol. Med. (Berl.) 81, 600–612. <https://doi.org/10.1007/s00109-003-0474-3>
60. Heilbronn, L. K., Rood, J., Janderova, L., Albu, J. B., Kelley, D. E., Ravussin, E., Smith, S. R. (2004) Relationship between serum resistin concentrations and insulin resistance in nonobese, obese, and obese diabetic subjects. J. Clin. Endocrinol. Metab. 89, 1844–1848. <https://doi.org/10.1210/jc.2003-031410>
61. Herder, C., Ouwens, D. M., Carstensen, M., Kowall, B., Huth, C., Meisinger, C., Rathmann, W., Roden, M., Thorand, B. (2015) Adiponectin may mediate the association between omentin, circulating lipids and insulin sensitivity: results from the KORA F4 study. Eur. J. Endocrinol. 172, 423–432. <https://doi.org/10.1530/EJE-14-0879>
62. Heymsfield, S. B., Greenberg, A. S., Fujioka, K., Dixon, R. M., Kushner, R., Hunt, T., Lubina, J. A., Patane, J., Self, B., Hunt, P., McCamish, M. (1999) Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282, 1568–1575. <https://doi.org/10.1001/jama.282.16.1568>
63. Hileman, S. M., Pierroz, D. D., Flier, J. S. (2000) Leptin, nutrition, and reproduction: timing is everything. J. Clin. Endocrinol. Metab. 85, 804–807. <https://doi.org/10.1210/jcem.85.2.6490>
64. Hotamisligil, G. S., Shargill, N. S., Spiegelman, B. M. (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91. <https://doi.org/10.1126/science.7678183>
65. Hotta, K., Funahashi, T., Arita, Y., Takahashi, M., Matsuda, M., Okamoto, Y., Iwahashi, H., Kuriyama, H., Ouchi, N., Maeda, K., Nishida, M., Kihara, S., Sakai, N., Nakajima, T., Hasegawa, K., Muraguchi, M., Ohmoto, Y., Nakamura, T., Yamashita, S., Hanafusa, T., Matsuzawa, Y. (2000) Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20, 1595–1599. <https://doi.org/10.1161/01.ATV.20.6.1595>
66. Hotta, K., Funahashi, T., Bodkin, N. L., Ortmeyer, H. K., Arita, Y., Hansen, B. C., Matsuzawa, Y. (2001) Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 50, 1126–1133. <https://doi.org/10.2337/diabetes.50.5.1126>
67. Housova, J., Anderlova, K., Krizova, J., Haluzikova, D., Kremen, J., Kumstyrova, T., Papezova, H., Haluzik, M. (2005) Serum adiponectin and resistin concentrations in patients with restrictive and binge/purge form of anorexia nervosa and bulimia nervosa. J. Clin. Endocrinol. Metab. 90, 1366–1370. <https://doi.org/10.1210/jc.2004-1364>
68. Hu, E., Liang, P., Spiegelman, B. M. (1996) AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271, 10697–10703. <https://doi.org/10.1074/jbc.271.18.10697>
69. Hukshorn, C. J., Saris, W. H., Westerterp-Plantenga, M. S., Farid, A. R., Smith, F. J., Campfield, L. A. (2000) Weekly subcutaneous pegylated recombinant native human leptin (PEG-OB) administration in obese men. J. Clin. Endocrinol. Metab. 85, 4003–4009. <https://doi.org/10.1210/jcem.85.11.6955>
70. Hukshorn, C. J., van Dielen, F. M., Buurman, W. A., Westerterp-Plantenga, M. S., Campfield, L. A., Saris, W. H. (2002) The effect of pegylated recombinant human leptin (PEG-OB) on weight loss and inflammatory status in obese subjects. Int. J. Obes. Relat. Metab. Disord. 26, 504–509. <https://doi.org/10.1038/sj.ijo.0801952>
71. Ibrahim, M. M. (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev. 11, 11–18. <https://doi.org/10.1111/j.1467-789X.2009.00623.x>
72. Karpe, F., Pinnick, K. E. (2015) Biology of upper-body and lower-body adipose tissue-link to whole-body phenotypes. Nat. Rev. Endocrinol. 11, 90–100. <https://doi.org/10.1038/nrendo.2014.185>
73. Kawanami, D., Maemura, K., Takeda, N., Harada, T., Nojiri, T., Imai, Y., Manabe, I., Utsunomiya, K., Nagai, R. (2004) Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions. Biochem. Biophys. Res. Commun. 314, 415–419. <https://doi.org/10.1016/j.bbrc.2003.12.104>
74. Kern, P. A., Ranganathan, S., Li, C., Wood, L., Ranganathan, G. (2001) Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 280, E745–E751. <https://doi.org/10.1152/ajpendo.2001.280.5.E745>
75. Kershaw, E. E., Flier, J. S. (2004) Adipose tissue as an endocrine organ. J. Clin .Endocrinol. Metab. 89, 2548–2556. <https://doi.org/10.1210/jc.2004-0395>
76. Kim, H. K., Shin, M. S., Youn, B. S., Namkoong, C., Gil, S. Y., Kang, G. M., Yu, J. H., Kim, M. S. (2011) Involvement of progranulin in hypothalamic glucose sensing and feeding regulation. Endocrinology 152, 4672–4682. <https://doi.org/10.1210/en.2011-1221>
77. Kim, K. H., Lee, K., Moon, Y. S., Sul, H. S. (2001) A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation. J. Biol. Chem. 276, 11252–11256. <https://doi.org/10.1074/jbc.C100028200>
78. Kitabchi, A. E., Umpierrez, G. E. (2003) Changes in serum leptin in lean and obese subjects with acute hyperglycemic crises. J. Clin. Endocrinol. Metab. 88, 2593–2596. <https://doi.org/10.1210/jc.2002-021975>
79. Klover, P. J., Clementi, A. H., Mooney, R. A. (2005) Interleukin-6 depletion selectively improves hepatic insulin action in obesity. Endocrinology 146, 3417–3427. <https://doi.org/10.1210/en.2004-1468>
80. Knights, A. J., Funnell, A. P., Pearson, R. C., Crossley, M., Bell-Anderson, K. S. (2014) Adipokines and insulin action: A sensitive issue. Adipocyte 3, 88–96. <https://doi.org/10.4161/adip.27552> <PubMed>
81. Kralisch, S., Klein, J., Lossner, U., Bluher, M., Paschke, R., Stumvoll, M., Fasshauer, M. (2005) Hormonal regulation of the novel adipocytokine visfatin in 3T3-L1 adipocytes. J. Endocrinol. 185, R1–R8. <https://doi.org/10.1677/joe.1.06211>
82. Kratzsch, J., Knerr, I., Galler, A., Kapellen, T., Raile, K., Körner, A., Thiery, J., Dötsch, J., Kiess, W. (2006) Metabolic decompensation in children with type 1 diabetes mellitus associated with increased serum levels of the soluble leptin receptor. Eur. J. Endocrinol. 155, 609–614. <https://doi.org/10.1530/eje.1.02261>
83. Kriegler, M., Perez, C., DeFay, K., Albert, I., Lu, S. D. (1988) A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53, 45–53. <https://doi.org/10.1016/0092-8674(88)90486-2>
84. Kubota, N., Yano, W., Kubota, T., Yamauchi, T., Itoh, S., Kumagai, H., Kozono, H., Takamoto, I., Okamoto, S., Shiuchi, T., Suzuki, R., Satoh, H., Tsuchida, A., Moroi, M., Sugi, K., Noda, T., Ebinuma, H., Ueta, Y., Kondo, T., Araki, E., Ezaki, O., Nagai, R., Tobe, K., Terauchi, Y., Ueki, K., Minokoshi, Y., Kadowaki, T. (2007) Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 6, 55–68. <https://doi.org/10.1016/j.cmet.2007.06.003>
85. Kusminski, C. M., McTernan, P. G., Kumar, S. (2005) Role of resistin in obesity, insulin resistance and type II diabetes. Clin. Sci. 109, 243–256. <https://doi.org/10.1042/CS20050078>
86. Lee, M. H., Klein, R. L., El-Shewy, H. M., Luttrell, D. K., Luttrell, L. M. (2008) The adiponectin receptors AdipoR1 and AdipoR2 activate ERK1/2 through a Src/Ras-dependent pathway and stimulate cell growth. Biochemistry 47, 11682–11692. <https://doi.org/10.1021/bi801451f> <PubMed>
87. Li, F. Y., Lam, K. S., Xu, A. (2012) Therapeutic perspectives for adiponectin: an update. Curr. Med. Chem. 19, 5513–5523. <https://doi.org/10.2174/092986712803833173>
88. Li, H., Zhou, B., Xu, L., Liu, J., Zang, W., Wu, S., Sun, H. (2014) Circulating PGRN is significantly associated with systemic insulin sensitivity and autophagic activity in metabolic syndrome. Endocrinology 155, 3493–3507. <https://doi.org/10.1210/en.2014-1058>
89. Licinio, J., Caglayan, S., Ozata, M., Yildiz, B. O., de Miranda, P. B., O’Kirwan, F., Whitby, R., Liang, L., Cohen, P., Bhasin, S., Krauss, R. M., Veldhuis, J. D., Wagner, A. J., DePaoli, A. M., McCann, S. M., Wong, M. L. (2004) Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc. Natl. Acad. Sci. U. S. A. 101, 4531–4536. <https://doi.org/10.1073/pnas.0308767101> <PubMed>
90. López-Bermejo, A., Chico-Julià, B., Fernàndez-Balsells, M., Recasens, M., Esteve, E., Casamitjana, R., Ricart, W., Fernández-Real, J. M. (2006) Serum visfatin increases with progressive beta-cell deterioration. Diabetes 55, 2871–2875. <https://doi.org/10.2337/db06-0259>
91. LoVerme, J., Duranti, A., Tontini, A., Spadoni, G., Mor, M., Rivara, S., Stella, N., Xu, C., Tarzia, G., Piomelli, D. (2009) Synthesis and characterization of a peripherally restricted CB1 cannabinoid antagonist, URB447, that reduces feeding and body-weight gain in mice. Bioorg. Med. Chem. Lett. 19, 639–643. <https://doi.org/10.1016/j.bmcl.2008.12.059> <PubMed>
92. Lumeng, C. N., Bodzin, J. L., Saltiel, A. R. (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184. <https://doi.org/10.1172/JCI29881> <PubMed>
93. Maeda, K., Okubo, K., Shimomura, I., Funahashi, T., Matsuzawa, Y., Matsubara, K. (1996) cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 221, 286–289. <https://doi.org/10.1006/bbrc.1996.0587>
94. Maeda, N., Shimomura, I., Kishida, K., Nishizawa, H., Matsuda, M., Nagaretani, H., Furuyama, N., Kondo, H., Takahashi, M., Arita, Y., Komuro, R., Ouchi, N., Kihara, S., Tochino, Y., Okutomi. K., Horie, M., Takeda, S., Aoyama, T., Funahashi, T., Matsuzawa, Y. (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med. 8, 731–737. <https://doi.org/10.1038/nm724>
95. Manolopoulos, K. N., Karpe, F., Frayn, K. N. (2010) Gluteofemoral body fat as a determinant of metabolic health. Int. J. Obes. (Lond.) 34, 949–959. <https://doi.org/10.1038/ijo.2009.286>
96. Matsubara, T., Mita, A., Minami, K., Hosooka, T., Kitazawa, S., Takahashi, K., Tamori, Y., Yokoi, N., Watanabe, M., Matsuo, E., Nishimura, O., Seino, S. (2012) PGRN is a key adipokine mediating high fat diet-induced insulin resistance and obesity through IL-6 in adipose tissue. Cell Metab. 15, 38–50. <https://doi.org/10.1016/j.cmet.2011.12.002>
97. McElroy, J., Sieracki, K., Chorvat, R. (2008) Non-brain penetrant CB1 receptor antagonists as a novel treatment of obesity and related metabolic disorders. Obesity 16, S47 (Suppl. 1).
98. McLaughlin, T., Lamendola, C., Liu, A., Abbasi, F. (2011) Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J. Clin. Endocrinol. Metab. 96, E1756–E1760. <https://doi.org/10.1210/jc.2011-0615> <PubMed>
99. McTernan, P. G., McTernan, C. L., Chetty, R., Jenner, K., Fisher, F. M., Lauer, M. N., Crocker, J., Barnett, A. H., Kumar, S. (2002) Increased resistin gene and protein expression in human abdominal adipose tissue. J. Clin. Endocrinol. Metab. 87, 2407. <https://doi.org/10.1210/jcem.87.5.8627>
100. Mendoza-Núñez, V. M., García-Sánchez, A., Sánchez-Rodríguez, M., Galván-Duarte, R. E., Fonseca-Yerena, M. E. (2002) Overweight, waist circumference, age, gender, and insulin resistance as risk factors for hyperleptinemia. Obes. Res. 10, 253–259. <https://doi.org/10.1038/oby.2002.34>
101. Minokoshi, Y., Kim, Y. B., Peroni, O. D., Fryer, L. G., Müller, C., Carling, D., Kahn, B. B. (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339–343. <https://doi.org/10.1038/415339a>
102. Mohamed-Ali, V., Goodrick, S., Rawesh A., Katz, D. R., Miles, J. M., Yudkin, J. S., Klein, S., Coppack, S. W. (1997) Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J. Clin. Endocrinol. Metab. 82, 4196–4200.
103. Moon, H. S., Dalamaga, M., Kim, S. Y., Polyzos, S. A., Hamnvik, O. P., Magkos, F., Paruthi, J., Mantzoros, C. S. (2013) Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr. Rev. 34, 377–412. <https://doi.org/10.1210/er.2012-1053> <PubMed>
104. Moschen, A. R., Gerner, R. R., Tilg, H. (2010) Pre-B cell colony enhancing factor/NAMPT/visfatin in inflammation and obesity-related disorders. Curr. Pharm. Des. 16, 1913–1920. <https://doi.org/10.2174/138161210791208947>
105. Münzberg, H., Myers, M. G. Jr. (2005) Molecular and anatomical determinants of central leptin resistance. Nat. Neurosci. 8, 566–570. <https://doi.org/10.1038/nn1454>
106. Nakano, Y., Tobe, T., Choi-Miura, N. H., Mazda, T., Tomita, M., Nakano, Y., Tobe, T., Choi-Miura, N. H., Mazda, T., Tomita, M. (1996) Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J. Biochem. 120, 803–812. <https://doi.org/10.1093/oxfordjournals.jbchem.a021483>
107. Nedvídková, J., Papežová, H., Haluzík, M., Schreiber, V. (2000) Interaction between serum leptin levels and hypothalamo-hypophyseal-thyroid axis in patients with anorexia nervosa. Endocr. Res. 26, 219–230. <https://doi.org/10.3109/07435800009066163>
108. Nedvídková, J., Smitka, K., Kopský, V., Hainer, V. (2005) Adiponectin, an adipocyte-derived protein. Physiol. Res. 54, 133–140.
109. Nishizawa, H., Shimomura, I., Kishida, K., Maeda, N., Kuriyama, H., Nagaretani, H., Matsuda, M., Kondo, H., Furuyama, N., Kihara, S., Nakamura, T., Tochino, Y., Funahashi, T., Matsuzawa, Y. (2002) Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes 51, 2734–2741. <https://doi.org/10.2337/diabetes.51.9.2734>
110. Nogueiras, R., Tschöp, M. H., Zigman, J. M. (2008) Central nervous system regulation of energy metabolism: ghrelin versus leptin. Ann. N. Y. Acad. Sci. 1126, 14–19. <https://doi.org/10.1196/annals.1433.054> <PubMed>
111. Ofei, F., Hurel, S., Newkirk, J., Sopwith, M., Taylor, R. (1996) Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 45, 881–885. <https://doi.org/10.2337/diab.45.7.881>
112. Okamoto, Y., Arita, Y., Nishida, M., Muraguchi, M., Ouchi, N., Takahashi, M., Igura, T., Inui, Y., Kihara, S., Nakamura, T., Yamashita, S., Miyagawa, J., Funahashi, T., Matsuzawa, Y. (2000) An adipocyte-derived plasma protein, adiponectin, adheres to injured vascular walls. Horm. Metab. Res. 32, 47–50. <https://doi.org/10.1055/s-2007-978586>
113. Oral, E. A. (2012) Leptin for type 1 diabetes: coming onto stage to be (or not?). Pediatr. Diabetes 13, 68–73. <https://doi.org/10.1111/j.1399-5448.2011.00797.x>
114. Oświęcimska, J., Suwała, A., Świętochowska, E., Ostrowska, Z., Gorczyca, P., Ziora-Jakutowicz, K., Machura, E., Szczepańska, M., Kukla, M., Stojewska, M., Ziora, D., Ziora, K. (2015) Serum omentin levels in adolescent girls with anorexia nervosa and obesity. Physiol. Res. (Epub ahead of print)
115. Pajvani, U. B., Du, X., Combs, T. P., Berg, A. H., Rajala, M. W., Schulthess, T., Engel, J., Brownlee, M., Scherer, P. E. (2003) Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J. Biol. Chem. 278, 9073–9085. <https://doi.org/10.1074/jbc.M207198200>
116. Patel, L., Buckels, A. C., Kinghorn, I. J., Murdock, P. R., Holbrook, J. D., Plumpton, C., Macphee, C. H., Smith, S. A. (2003) Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem. Biophys. Res. Commun. 300, 472–476. <https://doi.org/10.1016/S0006-291X(02)02841-3>
117. Paz, K., Hemi, R., LeRoith, D., Karasik, A., Elhanany, E., Kanety, H., Zick, Y. (1997) A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J. Biol. Chem. 272, 29911–29918. <https://doi.org/10.1074/jbc.272.47.29911>
118. Perry, R. J., Zhang, X. M., Zhang, D., Kumashiro, N., Camporez, J. P., Cline, G. W., Rothman, D. L., Shulman, G. I. (2014) Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat. Med. 20, 759–763. <https://doi.org/10.1038/nm.3579> <PubMed>
119. Perseghin, G., Burska, A., Lattuada, G., Alberti, G., Costantino, F., Ragogna, F., Oggionni, S., Scollo, A., Terruzzi, I., Luzi, L. (2006) Increased serum resistin in elite endurance athletes with high insulin sensitivity. Diabetologia 49, 1893–1900. <https://doi.org/10.1007/s00125-006-0267-7>
120. Petersen, K. F., Oral, E. A., Dufour, S., Befroy, D., Ariyan, C., Yu, C., Cline, G. W., DePaoli, A. M., Taylor, S. I., Gorden, P., Shulman, G. I. (2002) Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J. Clin. Invest. 109, 1345–1350. <https://doi.org/10.1172/JCI0215001>
121. Piestrzeniewicz, K., Łuczak, K., Komorowski, J., Maciejewski, M., Jankiewicz Wika, J., Goch, J. H. (2008) Resistin increases with obesity and atherosclerotic risk factors in patients with myocardial infarction. Metabolism 57, 488–493. <https://doi.org/10.1016/j.metabol.2007.11.009>
122. Polák, J., Klimčáková, E., Kováčiková, M., Vítková, M., Bajzová, M., Hejnová, J., Štich, V. (2006) The endocrine function of adipose tissue in the pathogenesis of insulin resistance. Interní Med. 10, 443–446. (in Czech)
123. Pradhan, A. D., Manson, J. E., Rifai, N., Buring, J. E., Ridker, P. M. (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286, 327–334. <https://doi.org/10.1001/jama.286.3.327>
124. Proença, A. R., Sertié, R. A., Oliveira, A. C., Campaãa, A. B., Caminhotto, R. O., Chimin, P., Lima, F. B. (2014) New concepts in white adipose tissue physiology. Braz. J. Med. Biol. Res. 47, 192–205. <https://doi.org/10.1590/1414-431X20132911> <PubMed>
125. Purwata, T. E. (2011) High TNF-alpha plasma levels and macrophages iNOS and TNF-alpha expression as risk factors for painful diabetic neuropathy. J. Pain Res. 4, 169–175. <https://doi.org/10.2147/JPR.S21751> <PubMed>
126. Rajala, M. W., Qi, Y., Patel, H. R., Takahashi, N., Banerjee, R., Pajvani, U. B., Sinha, M. K., Gingerich, R. L., Scherer, P. E., Ahima, R. S. (2004) Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes 53, 1671–1679. <https://doi.org/10.2337/diabetes.53.7.1671>
127. Reilly, M. P., Lehrke, M., Wolfe, M. L., Rohatgi, A., Lazar, M. A., Rader, D. J. (2005) Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 111, 932–939. <https://doi.org/10.1161/01.CIR.0000155620.10387.43>
128. Reitman, M. L., Mason, M. M., Moitra, J., Gavrilova, O., Marcus-Samuels, B., Eckhaus, M., Vinson, C. (1999) Transgenic mice lacking white fat: models for understanding human lipoatrophic diabetes. Ann. N. Y. Acad. Sci. 892, 289–296. <https://doi.org/10.1111/j.1749-6632.1999.tb07802.x>
129. Revollo, J. R., Körner, A., Mills, K. F., Satoh, A., Wang, T., Garten, A., Dasgupta, B., Sasaki, Y., Wolberger, C., Townsend, R. R., Milbrandt, J., Kiess, W., Imai, S. (2007) Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 6, 363–375. <https://doi.org/10.1016/j.cmet.2007.09.003> <PubMed>
130. Romacho, T., Sánchez-Ferrer, C. F., Peiró, C. (2013) Visfatin/Nampt: an adipokine with cardiovascular impact. Mediators Inflamm. 2013, 946427. <https://doi.org/10.1155/2013/946427> <PubMed>
131. Romacho, T., Elsen, M., Röhrborn, D., Eckel, J. (2014) Adipose tissue and its role in organ crosstalk. Acta Physiol. (Oxf.) 210, 733–753. <https://doi.org/10.1111/apha.12246>
132. Rosenstock, J., Hollander, P., Chevalier, S., Iranmanesh, A. (2008) SERENADE: the Study Evaluating Rimonabant Efficacy in Drug-naive Diabetic Patients: effects of monotherapy with rimonabant, the first selective CB1 receptor antagonist, on glycemic control, body weight, and lipid profile in drug-naive type 2 diabetes. Diabetes Care 31, 2169–2176. <https://doi.org/10.2337/dc08-0386> <PubMed>
133. Sacks, H. S., Fain, J. N. (2007) Human epicardial adipose tissue: a review. Am. Heart J. 153, 907–917. <https://doi.org/10.1016/j.ahj.2007.03.019>
134. Sáinz, N., Barrenetxe, J., Moreno-Aliaga, M. J., Martínez, J. A. (2015) Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism 64, 35–46. <https://doi.org/10.1016/j.metabol.2014.10.015>
135. Samal, B., Sun, Y., Stearns, G., Xie, C., Suggs, S., McNiece, I. (1994) Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol. Cell. Biol. 14, 1431–1437. <https://doi.org/10.1128/MCB.14.2.1431>
136. Scherer, P. E., Williams, S., Fogliano, M., Baldini, G., Lodish, H. F. (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749. <https://doi.org/10.1074/jbc.270.45.26746>
137. Senn, J. J., Klover, P. J., Nowak, I. A., Zimmers, T. A., Koniaris, L. G., Furlanetto, R. W., Mooney, R. A. (2003) Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J. Biol. Chem. 278, 13740–13746. <https://doi.org/10.1074/jbc.M210689200>
138. Skop, V., Kontrova, K., Zidkova, J., Zidek, V. (2009) Adipocytokines: Recently discovered hormones of adipose tissue. Chem. Listy 103, 187–192.
139. Smitka, K., Papezova, H., Vondra, K., Hill, M., Hainer, V., Nedvidkova, J. (2011) A higher response of plasma neuropeptide Y, growth hormone, leptin levels and extracellular glycerol levels in subcutaneous abdominal adipose tissue to Acipimox during exercise in patients with bulimia nervosa: single-blind, randomized, microdialysis study. Nutr. Metab. (Lond.) 8, 81. <https://doi.org/10.1186/1743-7075-8-81> <PubMed>
140. Smitka, K., Papezova, H., Vondra, K., Hill, M., Hainer, V., Nedvidkova, J. (2013a) Short-term exercise combined with Acipimox administration induces an increase in plasma ACTH and its subsequent fall in the recovery phase in bulimic women. Regul. Pept. 182, 45–52. <https://doi.org/10.1016/j.regpep.2012.12.010>
141. Smitka, K., Papezova, H., Vondra, K., Hill, M., Hainer, V., Nedvidkova, J. (2013b) The role of “mixed” orexigenic and anorexigenic signals and autoantibodies reacting with appetite-regulating neuropeptides and peptides of the adipose tissue-gut-brain axis: relevance to food intake and nutritional status in patients with anorexia nervosa and bulimia nervosa. Int. J. Endocrinol. 2013, 483145. <https://doi.org/10.1155/2013/483145> <PubMed>
142. Steppan, C. M., Bailey, S. T., Bhat, S., Brown, E. J., Banerjee, R. R., Wright, C. M., Patel, H. R., Ahima, R. S., Lazar, M. A. (2001) The hormone resistin links obesity to diabetes. Nature 409, 307–312. <https://doi.org/10.1038/35053000>
143. Steppan, C. M., Lazar, M. A. (2002) Resistin and obesity-associated insulin resistance. Trends Endocrinol. Metab. 13, 18–23. <https://doi.org/10.1016/S1043-2760(01)00522-7>
144. Szücs, N., Varga, I., Jakab, C., Patócs, A., Gláz, E., Tóth, M., Kiss, R., Rácz, K. (2001) Leptin inhibits cortisol and corticosterone secretion in pathologic human adrenocortical cells. Pituitary 4, 71–77. <https://doi.org/10.1023/A:1012990928218>
145. Tan, B. K., Adya, R., Farhatullah, S., Chen, J., Lehnert, H., Randeva, H. S. (2010) Metformin treatment may increase omentin-1 levels in women with polycystic ovary syndrome. Diabetes 59, 3023–3031. <https://doi.org/10.2337/db10-0124> <PubMed>
146. Tan, B. K., Chen, J., Hu, J., Amar, O., Mattu, H. S., Ramanjaneya, M., Patel, V., Lehnert, H., Randeva, H. S. (2014) Circulatory changes of the novel adipokine adipolin/CTRP12 in response to metformin treatment and an oral glucose challenge in humans. Clin. Endocrinol. (Oxf.) 81, 841–846. <https://doi.org/10.1111/cen.12438>
147. Tang, W., Lu, Y., Tian, Q. Y., Zhang, Y., Guo, F. J., Liu, G. Y., Syed, N. M., Lai, Y., Lin, E. A., Kong, L., Su, J., Yin, F., Ding, A. H., Zanin-Zhorov, A., Dustin, M. L., Tao, J., Craft, J., Yin, Z., Feng, J. Q., Abramson, S. B., Yu, X. P., Liu, C. J. (2011) The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332, 478–484. <https://doi.org/10.1126/science.1199214> <PubMed>
148. Tombran-Tink, J., Chader, G. G., Johnson, L. V. (1991) PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp. Eye Res. 53, 411–414. <https://doi.org/10.1016/0014-4835(91)90248-D>
149. Trayhurn, P., Beattie, J. H. (2001) Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc. Nutr. Soc. 60, 329–339. <https://doi.org/10.1079/PNS200194>
150. Tsuji, S., Uehori, J., Matsumoto, M., Suzuki, Y., Matsuhisa, A., Toyoshima, K., Seya, T. (2001) Human intelectin is a novel soluble lectin that recognizes galactofuranose in carbohydrate chains of bacterial cell wall. J. Biol. Chem. 276, 23456–23463. <https://doi.org/10.1074/jbc.M103162200>
151. Vázquez-Vela, M. E., Torres, N., Tovar, A. R. (2008) White adipose tissue as endocrine organ and its role in obesity. Arch. Med. Res. 39, 715–728. <https://doi.org/10.1016/j.arcmed.2008.09.005>
152. Verma, S., Li, S. H., Wang, C. H., Fedak, P. W., Li, R. K., Weisel, R. D., Mickle, D. A. (2003) Resistin promotes endo- thelial cell activation: further evidence of adipokine-endothelial interaction. Circulation 108, 736–740. <https://doi.org/10.1161/01.CIR.0000084503.91330.49>
153. Vieira-Potter, V. J. (2014) Inflammation and macrophage modulation in adipose tissues. Cell. Microbiol. 16, 1484–1492. <https://doi.org/10.1111/cmi.12336>
154. Waki, H., Yamauchi, T., Kamon, J., Ito, Y., Uchida, S., Kita, S., Hara, K., Hada, Y., Vasseur, F., Froguel, P., Kimura, S., Nagai, R., Kadowaki, T. (2003) Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J. Biol. Chem. 278, 40352–40363. <https://doi.org/10.1074/jbc.M300365200>
155. Wang, M. Y., Chen, L., Clark, G. O., Lee, Y., Stevens, R. D., Ilkayeva, O. R., Wenner, B. R., Bain, J. R., Charron, M. J., Newgard, C. B., Unger, R. H. (2010) Leptin therapy in insulin-deficient type I diabetes. Proc. Natl. Acad. Sci. U. S. A. 107, 4813–4819. <https://doi.org/10.1073/pnas.0909422107> <PubMed>
156. Wei, Z., Peterson, J. M., Lei, X., Cebotaru, L., Wolfgang, M. J., Baldeviano, G. C., Wong, G. W. (2012) C1q/TNF-related protein-12 (CTRP12), a novel adipokine that improves insulin sensitivity and glycemic control in mouse models of obesity and diabetes. J. Biol. Chem. 287, 10301–10315. <https://doi.org/10.1074/jbc.M111.303651> <PubMed>
157. Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., Ferrante, A. W. Jr. (2003) Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808. <https://doi.org/10.1172/JCI200319246>
158. Welt, C. K., Chan, J. L., Bullen, J., Murphy, R., Smith, P., DePaoli, A. M., Karalis, A., Mantzoros, C. S. (2004) Recombinant human leptin in women with hypothalamic amenorrhea. N. Engl. J. Med. 351, 987–997. <https://doi.org/10.1056/NEJMoa040388>
159. Weyer, C., Funahashi, T., Tanaka, S., Hotta, K., Matsuzawa, Y., Pratley, R. E., Tataranni, P. A. (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86, 1930–1935. <https://doi.org/10.1210/jcem.86.5.7463>
160. Wozniak, S. E., Gee, L. L., Wachtel, M. S., Frezza, E. E. (2009) Adipose tissue: the new endocrine organ? A review article. Dig. Dis. Sci. 54, 1847–1856. <https://doi.org/10.1007/s10620-008-0585-3>
161. Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K., Tsuboyama-Kasaoka, N., Ezaki, O., Akanuma, Y., Gavrilova, O., Vinson, C., Reitman, M. L., Kagechika, H., Shudo, K., Yoda, M., Nakano, Y., Tobe, K., Nagai, R., Kimura, S., Tomita, M., Froguel, P., Kadowaki, T. (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946. <https://doi.org/10.1038/90984>
162. Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., Murakami, K., Ohteki, T., Uchida, S., Takekawa, S., Waki, H., Tsuno, N. H., Shibata, Y., Terauchi, Y., Froguel, P., Tobe, K., Koyasu, S., Taira, K., Kitamura, T., Shimizu, T., Nagai, R., Kadowaki, T. (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769. <https://doi.org/10.1038/nature01705>
163. Yamauchi, T., Kadowaki, T. (2008) Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int. J. Obes. 32, S13–S18 (Suppl. 7). <https://doi.org/10.1038/ijo.2008.233>
164. Yamawaki, H., Tsubaki, N., Mukohda, M., Okada, M., Hara, Y. (2010) Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem. Biophys. Res. Commun. 393, 668–672. <https://doi.org/10.1016/j.bbrc.2010.02.053>
165. Yamawaki, H., Kuramoto, J., Kameshima, S., Usui, T., Okada, M., Hara, Y. (2011) Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem. Biophys. Res. Commun. 408, 339–343. <https://doi.org/10.1016/j.bbrc.2011.04.039>
166. Yang, R. Z., Lee, M. J., Hu, H., Pray, J., Wu, H. B., Hansen, B. C., Shuldiner, A. R., Fried, S. K., McLenithan, J. C., Gong, D. W. (2006) Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am. J. Physiol. Endocrinol. Metab. 290, E1253–E1261. <https://doi.org/10.1152/ajpendo.00572.2004>
167. Yang, W. S., Lee, W. J., Funahashi, T., Tanaka, S., Matsuzawa, Y., Chao, C. L., Chen, C. L., Tai, T. Y., Chuang, L. M. (2001) Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J. Clin. Endocrinol. Metab. 86, 3815–3819. <https://doi.org/10.1210/jcem.86.8.7741>
168. Yannakoulia, M., Yiannakouris, N., Blüher, S., Matalas, A. L., Klimis-Zacas, D., Mantzoros, C. S. (2003) Body fat mass and macronutrient intake in relation to circulating soluble leptin receptor, free leptin index, adiponectin, and resistin concentrations in healthy humans. J. Clin. Endocrinol. Metab. 88, 1730–1736. <https://doi.org/10.1210/jc.2002-021604>
169. Zahorska-Markiewicz, B. (2006) Metabolic effects associated with adipose tissue distribution. Adv. Med. Sci. 51, 111–114.
170. Zelissen, P. M., Stenlof, K., Lean, M. E., Fogteloo, J., Keulen, E. T., Wilding, J., Finer, N., Rössner, S., Lawrence, E., Fletcher, C., McCamish, M. (2005) Effect of three treatment schedules of recombinant methionyl human leptin on body weight in obese adults: a randomized, placebo-controlled trial. Diabetes Obes. Metab. 7, 755–761. <https://doi.org/10.1111/j.1463-1326.2005.00468.x>
171. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., Friedman, J. M. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432. <https://doi.org/10.1038/372425a0>
172. Zimmermann, R., Strauss, J. G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A., Zechner, R. (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386. <https://doi.org/10.1126/science.1100747>
173. Ziora, K. T., Oswiecimska, J. M., Swietochowska, E., Ostrowska, Z., Stojewska, M., Gorczyca, P., Rojewska, K., Ziora-Jakutowicz, K., Szczepanska, M., Ziora, D. (2011a) Assessment of serum levels resistin in girls with anorexia nervosa. Part I. Relationship between resistin and body mass index. Neuro Endocrinol. Lett. 32, 691–696.
174. Ziora, K. T., Oswiecimska, J. M., Swietochowska, E., Ostrowska, Z., Stojewska, M., Gorczyca, P., Rojewska, K., Ziora-Jakutowicz, K., Szczepanska, M., Ziora, D. (2011b) Assessment of serum levels resistin in girls with anorexia nervosa. Part II. Relationships between serum levels of resistin and thyroid, adrenal and gonadal hormones. Neuro Endocrinol. Lett. 32, 697–703.
175. Ziora, K., Oświęcimska, J., Swiętochowska, E., Ziora, D., Stojewska, M., Suwała, A., Ostrowska, Z., Gorczyca, P., Klimacka-Nawrot, E., Lukas, W., Błońska-Fajfrowska, B. (2012) Assessment of serum visfatin levels in girls with anorexia nervosa. Clin. Endocrinol. (Oxf.) 76, 514–519. <https://doi.org/10.1111/j.1365-2265.2011.04181.x>
front cover

ISSN 1214-6994 (Print) ISSN 2336-2936 (Online)

Archive