Prague Med. Rep. 2015, 116, 122-138

https://doi.org/10.14712/23362936.2015.51

Sodium Orthovanadate and Trigonella Foenum Graecum Prevents Neuronal Parameters Decline and Impaired Glucose Homeostasis in Alloxan Diabetic Rats

Pardeep Kumar1, Asia Taha1,2, Nitin Kumar3,4, Vinod Kumar4, Najma Zaheer Baquer1

1School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
2Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
3Department of Basic and Applied Sciences, Vivekananda Global University, Jaipur, India
4Indian Institute of Maize Research, IARI, New Delhi, India

Received March 5, 2015
Accepted June 1, 2015

References

1. Ahmed, N., Tarannum, S. (2009) Acetylcholinesterase activity in the brain of alloxan diabetic albino rats: Presence of an inhibitor of this enzyme activity in the cerebral extract. Int. J. Diabetes Dev. Ctries. 29(4), 174–177. <https://doi.org/10.4103/0973-3930.57350> <PubMed>
2. Baquer, N. Z., Taha, A., Kumar, P., McLean, P., Cowsik, S. M., Kale, R. K., Singh, R., Sharma, D. (2009) A metabolic and functional overview of brain aging linked to neurological disorders. Biogerontology 10, 377–413. <https://doi.org/10.1007/s10522-009-9226-2>
3. Baquer, N. Z., Kumar, P., Taha, A., Cowsik, S. M., Kale, R. K., McLean, P. (2011) Metabolic and molecular action of Trigonella foenum-graecum, fenugreek: Alternative therapies for diabetes. J. Biosci. 36(2), 385–396. <https://doi.org/10.1007/s12038-011-9042-0>
4. Basch, E., Ulbricht, C., Kuo, G., Szapary, P., Smith, M. (2003) Therapeutic applications of fenugreek. Altern. Med. Rev. 8, 20–27.
5. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. <https://doi.org/10.1016/0003-2697(76)90527-3>
6. Catravas, G. N., Takenaga, J., McHale, C. G. (1977) Effect of chronic administration of morphine on monoamine oxidase activity in discrete regions in the brain in rats. Biochem. Pharmacol. 31, 27–35.
7. Desaiah, D., Chetty, C. S., Rao, K. S. (1985) Chlordecone inhibition of calmodulin activated calcium ATPase in rat brain synaptosomes. J. Toxicol. Environ. Health 16, 189–195. <https://doi.org/10.1080/15287398509530732>
8. Desco, M. C., Asensi, M., Marquez, R., Martinez-Valls, J., Vento, M., Pallardo, F. V., Sastre, J., Vina, J. (2002) Xanthine oxidase is involved in free radical production in type 1 diabetes: protection by allopurinol. Diabetes 51(4), 1118–1124. <https://doi.org/10.2337/diabetes.51.4.1118>
9. Doğru, P. B., Daş, E. N., Nebioğlu, S. (2005) Diabetes-induced decrease in rat brain microsomal Ca2+-ATPase activity. Cell Biochem. Funct. 23(4), 239–243. <https://doi.org/10.1002/cbf.1144>
10. El-Missiry, M. A., Othman, A. I., Amer, M. A. (2004) L-arginine ameliorates oxidative stress in alloxan-induced experimental diabetes mellitus. J. Appl. Toxicol. 24(2), 93–97. <https://doi.org/10.1002/jat.952>
11. Fuller, S., Stephens, J. M. (2015) Diosgenin, 4-hydroxyisoleucine, and fiber from fenugreek: Mechanisms of actions and potential effects on metabolic syndrome. Adv. Nutr. 6(2), 189–197. <https://doi.org/10.3945/an.114.007807> <PubMed>
12. Ghareeb, D. A., Hussen, H. M. (2008) Vanadium improves brain acetylcholinesterase activity on early stage alloxan-diabetic rats. Neurosci. Lett. 436(1), 44–47. <https://doi.org/10.1016/j.neulet.2008.02.073>
13. Grynkiewicz, G., Poenie, M., Tsien, R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450.
14. Gupta, G., Azam, M., Baquer, N. Z. (1992) Effect of experimental diabetes on the catecholamine metabolism in rat brain. J. Neurochem. 58(1), 95–100. <https://doi.org/10.1111/j.1471-4159.1992.tb09282.x>
15. Hong, J. H., Kim, M. J., Park, M. R., Kwag, O. G., Lee, I. S., Byun, B. H., Lee, S. C., Lee, K. B., Rhee, S. J. (2004) Effects of vitamin E on oxidative stress and membrane fluidity in brain of streptozotocin-induced diabetic rats. Clin. Chim. Acta 340(1–2), 107–115. <https://doi.org/10.1016/j.cccn.2003.10.003>
16. Kumar, P., Kale, R. K., Mukherjee, S., Prakash, K., McLean, P., Baquer, N. Z. (2011) Antidiabetic effects of Trigonella foenum-graecum seed powder in a rat model. Toxicol. Environ. Chem. 93(10), 2085–2097. <https://doi.org/10.1080/02772248.2011.626418>
17. Kumar, P., Kale, R. K., McLean, P., Baquer, N. Z. (2012a) Antidiabetic and neuroprotective effects of Trigonella foenum-graecum seed powder in diabetic rat brain. Prague Med. Rep. 113(1), 33–43. <https://doi.org/10.14712/23362936.2015.35>
18. Kumar, P., Kale, R. K., Baquer, N. Z. (2012b) Effects of Trigonella foenum-graecum seed powder on monoamine oxidase, neurolipofuscin, DNA degradation and glucose transporter in alloxan diabetic rat brain. Eur. Rev. Med. Pharmacol. Sci. 16, 18–27 (Suppl. 3).
19. Kumar, P., Taha, A., Kale, R. K., McLean, P., Baquer, N. Z. (2012c) Beneficial effects of Trigonella foenum graecum and sodium orthovanadate on metabolic parameters in experimental diabetes. Cell Biochem. Funct. 30(6), 464–473. <https://doi.org/10.1002/cbf.2819>
20. Lehotsky, J., Kaplán, P., Murín, R., Raeymaekers, L. (2002) The role of plasma membrane Ca2+ pumps (PMCAs) in pathologies of mammalian cells. Front. Biosci. 7, 53–84. <https://doi.org/10.2741/lehotsky>
21. Mantha, A. K., Moorthy, K., Cowsik, S. M., Baquer, N. Z. (2006) Membrane associated functions of neurokinin B (NKB) on Aβ (25–35) induced toxicity in aging rat brain synaptosomes. Biogerontology 7(1), 19–33. <https://doi.org/10.1007/s10522-005-6044-z>
22. Mayanil, C. S., Kazmi, S. M., Baquer, N. Z. (1982) Na+,K+-ATPase and Mg2+-ATPase activities in different regions of rat brain during alloxan diabetes. J. Neurochem. 39, 903–908. <https://doi.org/10.1111/j.1471-4159.1982.tb11475.x>
23. Mishra, S. K., Kumar, A., Chaturvedi, R. K., Pandeya, S. N. (2010) Vanadium salts versus diabetes: An overview. Syst. Rev. Pharm. 1, 172–174. <https://doi.org/10.4103/0975-8453.75073>
24. Mohammad, S., Taha, A., Akhtar, K., Bamezai, R. N., Baquer, N. Z. (2006) In vivo effect of Trigonella foenum graecum on the expression of pyruvate kinase, phosphoenolpyruvate carboxykinase and distribution of glucose transporter (GLUT4) in alloxan diabetic rats. Can. J. Physiol. Pharmacol. 84, 647–654. <https://doi.org/10.1139/y05-164>
25. Petit, P. R., Sauvaire, Y. D., Hillaire-Buys, D. M., Leconte, O. M., Baissac, Y. G., Ponsin, G. R., Ribes, G. R. (1995) Steroid saponins from fenugreek seeds: Extraction, purification, and pharmacological investigation on feeding behavior and plasma cholesterol. Steroids 60(10), 674–680. <https://doi.org/10.1016/0039-128X(95)00090-D>
26. Pitocco, D., Tesauro, M., Alessandro, R., Ghirlanda, G., Cardillo, C. (2013) Oxidative stress in diabetes: Implications for vascular and other complications. Int. J. Mol. Sci. 14(11), 21525–21550. <https://doi.org/10.3390/ijms141121525> <PubMed>
27. Rao, A., Sridhar, R., Das, N. (2007) Elevated butyrylcholinesterase and acetylcholinesterase may predict the development of type 2 diabetes mellitus and Alzheimer’s disease. Med. Hypotheses 69, 1272–1276. <https://doi.org/10.1016/j.mehy.2007.03.032>
28. Riga, D., Riga, S. (1974) Effects of centrophenoxine on the lipofuscin pigments in the nervous system of old rats. Brain Res. 72, 265–275. <https://doi.org/10.1016/0006-8993(74)90864-6>
29. Siddiqui, M. R., Moorthy, K., Taha, A., Hussain, E. M., Basir, S. F., Baquer, N. Z. (2005) Amelioration of altered antioxidants status and membrane linked functions by vanadium and Trigonella in alloxan diabetic rat brains. J. Biosci. 30, 483–490. <https://doi.org/10.1007/BF02703722>
30. Soto-Otero, R., Méndez-Alvarez, E., Hermida-Ameijeiras, A., Sánchez-Sellero, I., Cruz-Landeira, A., Lamas, M. L. (2001) Inhibition of brain monoamine oxidase activity by the generation of hydroxyl radicals: potential implications in relation to oxidative stress. Life Sci. 69(8), 879–889. <https://doi.org/10.1016/S0024-3205(01)01178-X>
31. Srinivasan, K. (2006) Fenugreek (Trigonella foenum-graecum): A review of health beneficial physiological effects. Food Rev. Int. 22, 203–224. <https://doi.org/10.1080/87559120600586315>
32. Sugaya, A., Sugimioto, H., Mogi, N., Tsujigami, H., Deguchi, S. (2004) Experimental diabetes accelerates accumulation of fluorescent pigments in rat trigeminal neurons. Brain Res. 27, 132–134. <https://doi.org/10.1016/j.brainres.2003.11.033>
33. Tappel, A., Fletcher, B., Deamer, D. (1973) Effects of antioxidants and nutrients on lipid peroxidation fluorescent product and aging parameters in the mouse. J. Gerontol. 28, 415–424. <https://doi.org/10.1093/geronj/28.4.415>
34. Tiwari, B. M., Pandey, K. B., Abidi, A. B., Rizvi, I. S. (2013) Markers of oxidative stress during diabetes mellitus. J. Biomarkers 2013, 378790. <https://doi.org/10.1155/2013/378790> <PubMed>
35. Yadav, U. C. S., Baquer, N. Z. (2014) Pharmacological effects of Trigonella foenum-graecum L. in health and disease. Pharm. Biol. 52(2), 243–254. <https://doi.org/10.3109/13880209.2013.826247>
front cover

ISSN 1214-6994 (Print) ISSN 2336-2936 (Online)

Archive