Prague Med. Rep. 2015, 116, 73-86
https://doi.org/10.14712/23362936.2015.48
Isoelectric Focusing of Serum Apolipoprotein C-III as a Sensitive Screening Method for the Detection of O-glycosylation Disturbances
References
1. 2014) Cell surface protein glycosylation in cancer. Proteomics 14(4–5), 525–546.
< , M. N., Chik, J., Lee, L., Anugraham, M., Abrahams, J. L., Packer, N. H. (https://doi.org/10.1002/pmic.201300387>
2. 2006) Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc. Natl. Acad. Sci. U. S. A. 103(10), 3764–3769.
< , F., Vasile, E., Schollen, E., Callewaert, N., Raemaekers, T., Quelhas, D., Jaeken, J., Mills, P., Winchester, B., Krieger, M., Annaert, W., Matthijs, G. (https://doi.org/10.1073/pnas.0507685103>
<PubMed>
3. 2007) A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1-Cog8 interaction in COG complex formation. Hum. Mol. Genet. 16(7), 717–730.
< , F., Ungar, D., Reynders, E., Zeevaert, R., Mills, P., García-Silva, M. T., Briones, P., Winchester, B., Morelle, W., Krieger, M., Annaert, W., Matthijs, G. (https://doi.org/10.1093/hmg/ddl476>
4. 2014) Solving glycosylation disorders: Fundamental approaches reveal complicated pathways. Am. J. Hum. Genet. 94(2), 161–175.
< , H. H., Chong, J. X., Bamshad, M. J., Ng, B. G. (https://doi.org/10.1016/j.ajhg.2013.10.024>
<PubMed>
5. 2014) A novel genetic defect connecting cutis laxa to congenital disorders of glycosylation. J. Inherit. Metab. Dis. 37, 163 (Suppl. 1).
, T., Mohamed, M., Korenke, C., Van Asbeck, E., Van Kraaij, S., Monique, V. S., Lefeber, D., Wevers, R., Morava, E. (
6. 1982) An abnormal triglyceride-rich lipoprotein containing excess sialylated apolipoprotein C-III. J. Clin. Invest. 69(4), 932–939.
< , G., Stocks, J., Dodson, P., Galton, D. J. (https://doi.org/10.1172/JCI110532>
<PubMed>
7. 2009) Loss-of-function mutations in ATP6V0A2 impair vesicular trafficking, tropoelastin secretion and cell survival. Hum. Mol. Genet. 18(12), 2149–2165.
< , V., Morava, E., Kornak, U., Lefeber, D. J., Fischer, B., Dimopoulou, A., Aldinger, A., Choi, J., Davis, E. C., Abuelo, D. N., Adamowicz, M., Al-Aama, J., Basel-Vanagaite, L., Fernandez, B., Greally, M. T., Gillessen-Kaesbach, G., Kayserili, H., Lemyre, E., Tekin, M., Türkmen, S., Tuysuz, B., Yüksel-Konuk, B., Mundlos, S., Van Maldergem, L., Wevers, R. A., Urban, Z. (https://doi.org/10.1093/hmg/ddp148>
<PubMed>
8. 1990) Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science 249(4970), 790–793.
< , Y., Azrolan, N., O’Connell, A., Walsh, A., Breslow, J. L. (https://doi.org/10.1126/science.2167514>
9. 1981) Quantitation of human apolipoprotein C-III and its subspecie by radioimmunoassay and analytical isoelectric focusing: Abnormal plasma triglyceride-rich lipoprotein apolipoprotein C-III subspecie concentrations in hypertriglyceridemia. J. Lipid Res. 22(5), 800–810.
, M. L., Srivastava, L. S., Hynd, B. A., Gartside, P. S., Perisutti, G. (
10. 2008) Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 40(2), 189–197.
< , S., Melander, O., Guiducci, C., Surti, A., Burtt, N. P., Rieder, M. J., Cooper, G. M., Roos, C., Voight, B. F., Havulinna, A. S., Wahlstrand, B., Hedner, T., Corella, D., Tai, E. S., Ordovas, J. M., Berglund, G., Vartiainen, E., Jousilahti, P., Hedblad, B., Taskinen, M. R., Newton-Cheh, C., Salomaa, V., Peltonen, L., Groop, L., Altshuler, D. M., Orho-Melander, M. (https://doi.org/10.1038/ng.75>
<PubMed>
11. 2015) Mutations in COG2 encoding a subunit of the conserved oligomeric Golgi complex cause a congenital disorder of glycosylation. Clin. Genet. 87(5), 455–460.
< , H., Ando, N., Yuasa, I., Wada, Y., Tsurusaki, Y., Nakashima, M., Miyake, N., Saitoh, S., Matsumoto, N., Saitsu, H. (https://doi.org/10.1111/cge.12417>
12. 2010) Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation. Hum. Mol. Genet. 19(18), 3623–3633.
< , J., Thiel, C., Rind, N., Ungar, D., Prinsen, B. H., De Koning, T. J., Van Hasselt, P. M., Körner, C. (https://doi.org/10.1093/hmg/ddq278>
13. 1994) Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J. Biol. Chem. 269(38), 23610–23616.
, N., Li, H., Lee, D., Oliver, P., Quarfordt, S. H., Osada, J. (
14. 2001) Lipoprotein distribution of apolipoprotein C-III and its relationship to the presence in plasma of triglyceride-rich remnant lipoproteins. Metabolism 50(1), 112–119.
< , C., Tremblay, M., Fredenrich, A., Davignon, J., Cohn, J. S. (https://doi.org/10.1053/meta.2001.19452>
15. 2013) GALNT2 expression is reduced in patients with type 2 diabetes: Possible role of hyperglycemia. PLoS One 8(7), e70159.
< , A., Di Mauro, L., Menzaghi, C., Prudente, S., Mangiacotti, D., Fini, G., Lotti, G., Trischitta, V., Di Paola, R. (https://doi.org/10.1371/journal.pone.0070159>
<PubMed>
16. 2010) Analysis of N- and O-linked protein glycosylation in children with Prader-Willi syndrome. J. Intellect. Disabil. Res. 54(10), 929–937.
< , T., Heussler, H. S., Bowling, F. G. (https://doi.org/10.1111/j.1365-2788.2010.01323.x>
17. 2008) Pathogenetic significance of aberrant glycosylation of IgA1 in IgA nephropathy. Clin. Exp. Nephrol. 12(5), 332–338.
< , I., Gejyo, F. (https://doi.org/10.1007/s10157-008-0054-5>
18. 1989) Deficit of uridine diphosphate galactose in galactosaemia. J. Inherit. Metab. Dis. 12(3), 257–266.
< , W. G., Xu, Y. K., Kaufman, F. R., Donnell, G. N. (https://doi.org/10.1007/BF01799215>
19. 2011) Plasma apolipoprotein C-III metabolism in patients with chronic kidney disease. J. Lipid Res. 52(4), 794–800.
< , E. M., Chan, D. T., Watts, G. F., Chan, D. C., Ng, T. W., Dogra, G. K., Irish, A. B., Barrett, P. H. (https://doi.org/10.1194/jlr.M011163>
<PubMed>
20. 2009) Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation. Hum. Mol. Genet. 18(22), 4350–4356.
< , P., Maag, C., Troxler, H., Foulquier, F., Kleinert, P., Schnabel, S., Baumgartner, M., Hennet, T. (https://doi.org/10.1093/hmg/ddp389>
21. 2013) Golgi-situated endoplasmic reticulum α-1, 2-mannosidase contributes to the retrieval of ERAD substrates through a direct interaction with γ-COP. Mol. Biol. Cell 24(8), 1111–1121.
< , S., Cheng, X., Sifers, R. N. (https://doi.org/10.1091/mbc.E12-12-0886>
<PubMed>
22. 2014) MAN1B1-CDG: How stressed-out can the Golgi be? Glycobiology 24(11), 1105.
, R., Rymen, D., Jurisch-Yaksi, N., Foulquier, F., Annaert, W., Matthijs, G. (
23. 2013) A novel congenital disorder of glycosylation type without central nervous system involvement caused by mutations in the phosphoglucomutase 1 gene. J. Inherit. Metab. Dis. 36(3), 535–542.
< , B., Medrano, C., Ecay, M. J., Ruiz-Sala, P., Martínez-Pardo, M., Ugarte, M., Pérez-Cerdá, C. (https://doi.org/10.1007/s10545-012-9525-7>
24. 2000) VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the cholesterol and recurrent events (CARE) trial. Circulation 102(16), 1886–1892.
< , F. M., Alaupovic, P., Moye, L. A., Cole, T. G., Sussex, B., Stampfer, M. J., Pfeffer, M. A., Braunwald, E. (https://doi.org/10.1161/01.CIR.102.16.1886>
25. 2014) Reduced apolipoprotein glycosylation in patients with the metabolic syndrome. PLoS One 9(8), e104833.
< , O. V., Fillaus, K., Jing, L., Harris, W. S., Shearer, G. C. (https://doi.org/10.1371/journal.pone.0104833>
<PubMed>
26. Serino, G., Sallustio, F., Curci, C., Cox, S. N., Pesce, F., De Palma, G., Schena, F. P. (2015) Role of let-7b in the regulation of N-acetylgalactosaminyltransferase 2 in IgA nephropathy. Nephrol. Dial. Transplant. (Epub ahead of print)
27. 2005) Clinical and biochemical presentation of siblings with COG-7 deficiency, a lethal multiple O- and N-glycosylation disorder. J. Inherit. Metab. Dis. 28(5), 707–714.
< , L. J., Bakker, J. A., van der Meer, S. B., Sijstermans, H. J., Steet, R. A., Wevers, R. A., Jaeken, J. (https://doi.org/10.1007/s10545-005-0015-z>
28. 2014) Multiple phenotypes in phosphoglucomutase 1 deficiency. N. Engl. J. Med. 370(6), 533–542.
< , L. C., Rust, S., Van Scherpenzeel, M., Ng, B. G., Losfeld, M. E., Timal, S., Raymond, K., He, P., Ichikawa, M., Veltman, J., Huijben, K., Shin, Y. S., Sharma, V., Adamowicz, M., Lammens, M., Reunert, J., Witten, A., Schrapers, E., Matthijs, G., Jaeken, J., Rymen, D., Stojkovic, T., Laforêt, P., Petit, F., Aumaître, O., Czarnowska, E., Piraud, M., Podskarbi, T., Stanley, C. A., Matalon, R., Burda, P., Seyyedi, S., Debus, V., Socha, P., Sykut-Cegielska, J., Van Spronsen, F., De Meirleir, L., Vajro, P., DeClue, T., Ficicioglu, C., Wada, Y., Wevers, R. A., Vanderschaeghe, D., Callewaert, N., Fingerhut, R., Van Schaftingen, E., Freeze, H. H., Morava, E., Lefeber, D. J., Marquardt, T. (https://doi.org/10.1056/NEJMoa1206605>
<PubMed>
29. 1996) Characteristics of low density lipoprotein isolated from circulating immune complexes. Atherosclerosis 122(2), 191–199.
< , V. V., Sobenin, I. A., Orekhov, A. N., Jaakkola, O., Solakivi, T., Nikkari, T. (https://doi.org/10.1016/0021-9150(95)05737-4>
30. 2014) Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency. Brain 137(Pt 4), 1030–1038.
< , M., Timal, S., Rymen, D., Hoischen, A., Wuhrer, M., Hipgrave-Ederveen, A., Grunewald, S., Peanne, R., Saada, A., Edvardson, S., Grønborg, S., Ruijter, G., Kattentidt-Mouravieva, A., Brum, J. M., Freckmann, M. L., Tomkins, S., Jalan, A., Prochazkova, D., Ondruskova, N., Hansikova, H., Willemsen, M. A., Hensbergen, P. J., Matthijs, G., Wevers, R. A., Veltman, J. A., Morava, E., Lefeber, D. J. (https://doi.org/10.1093/brain/awu019>
31. 2003) Apolipoprotein C-III isofocusing in the diagnosis of genetic defects in O-glycan biosynthesis. Clin. Chem. 49(11), 1839–1845.
< , S., Grünewald, S., Morava, E., Penzien, J. M., Briones, P., García-Silva, M. T., Demacker, P. N., Huijben, K. M., Wevers, R. A. (https://doi.org/10.1373/clinchem.2003.022541>
32. 2006a) Abnormal glycosylation with hypersialylated O-glycans in patients with Sialuria. Biochim. Biophys. Acta 1762(6), 598–607.
< , S., Abd Hamid, U. M., Critchley, A., Royle, L., Dwek, R. A., Morava, E., Leroy, J. G., Wilcken, B., Lagerwerf, A. J., Huijben, K. M., Lefeber, D. J., Rudd, P. M., Wevers, R. A. (https://doi.org/10.1016/j.bbadis.2006.03.009>
33. 2006b) Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review. Clin. Chem. 52(4), 574–600.
< , S., Lefeber, D. J., Morava, E., Wevers, R. A. (https://doi.org/10.1373/clinchem.2005.063040>
34. 2007) Transferrin and apolipoprotein C-III isofocusing are complementary in the diagnosis of N- and O-glycan biosynthesis defects. Clin. Chem. 53(2), 180–187.
< , S., Grünewald, S., Huijben, K. M., Morava, E., Mollicone, R., Van Engelen, B. G., Lefeber, D. J., Wevers, R. A. (https://doi.org/10.1373/clinchem.2006.073940>
35. 2013) Serum N-glycan and O-glycan analysis by mass spectrometry for diagnosis of congenital disorders of glycosylation. Anal. Biochem. 442(2), 178–185.
< , B., Zhang, W., Li, X., Jiang, R., Harper, T., Liu, R., Cummings, R. D., He, M. (https://doi.org/10.1016/j.ab.2013.07.037>
36. 2013) Bone dysplasia as a key feature in three patients with a novel congenital disorder of glycosylation (CDG) type II due to a deep intronic splice mutation in TMEM165. JIMD Rep. 8, 145–152.
< , R., De Zegher, F., Sturiale, L., Garozzo, D., Smet, M., Moens, M., Matthijs, G., Jaeken, J. (https://doi.org/10.1007/8904_2012_172>
<PubMed>