Prague Med. Rep. 2015, 116, 290-302

https://doi.org/10.14712/23362936.2015.68

How Does Energy Intake Influence the Levels of Certain Steroids?

Beáta Rácz, Michaela Dušková, Hana Jandíková, Martin Hill, Karel Vondra, Luboslav Stárka

Institute of Endocrinology, Prague, Czech Republic

Received September 10, 2015
Accepted November 16, 2015

References

1. Ahi, S., Esmaeilzadeh, M., Kayvanpour, E., Sedaghat-Hamedani, F., Samadanifard, S. H. (2011) A bulking agent may lead to adrenal insufficiency crisis: a case report. Acta Med. Iran. 49(10), 688–689.
2. Basu, R., Singh, R. J., Basu, A., Chittilapilly, E. G., Johnson, C. M., Toffolo, G., Cobelli, C., Rizza, R. A. (2004) Splanchnic cortisol production occurs in humans: Evidence for conversion of cortisone to cortisol via the 11-beta hydroxysteroid dehydrogenase (11beta-hsd) type 1 pathway. Diabetes 53(8), 2051–2059. <https://doi.org/10.2337/diabetes.53.8.2051>
3. Benedict, C., Hallschmid, M., Scheibner, J., Niemeyer, D., Schultes, B., Merl, V., Fehm, H. L., Born, J., Kern, W. (2005) Gut protein uptake and mechanisms of meal-induced cortisol release. J. Clin. Endocrinol. Metab. 90(3), 1692–1696. <https://doi.org/10.1210/jc.2004-1792>
4. Follenius, M., Brandenberger, G., Hietter, B. (1982) Diurnal cortisol peaks and their relationships to meals. J. Clin. Endocrinol. Metab. 55(4), 757–761.
5. Herrmann, C., Göke, R., Richter, G., Fehmann, H. C., Arnold, R., Göke, B. (1995) Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion 56(2), 117–126. <https://doi.org/10.1159/000201231>
6. Hill, M., Pařízek, A., Kancheva, R., Dušková, M., Velíková, M., Kříž, L., Klímková, M., Pašková, A., Žižka, Z., Matucha, P., Meloun, M., Stárka, L. (2010) Steroid metabolome in plasma from the umbilical artery, umbilical vein, maternal cubital vein and in amniotic fluid in normal and preterm labor. J. Steroid Biochem. Mol. Biol. 121, 594–610. <https://doi.org/10.1016/j.jsbmb.2009.10.012>
7. Lecocq, F. R., Mebane, D., Madson, L. L. (1964) The acute effect of hydrocortisone on hepatic glucose output and peripheral glucose utilization. J. Clin. Invest. 43, 237–246. <https://doi.org/10.1172/JCI104908> <PubMed>
8. Lightman, S. L., Wiles, C. C., Atkinson, H. C., Henley, D. E., Russell, G. M., Leendertz, J. A., McKenna, M. A., Spiga, F., Wood, S. A., Conway-Campbell, B. L. (2008) The significance of glucocorticoid pulsatility. Eur. J. Pharmacol. 583(2–3), 255–262. <https://doi.org/10.1016/j.ejphar.2007.11.073>
9. Meloun, M., Hill, M., Militký, J., Kupka, A. K. (2000) Transformation in the PC-aided biochemical data analysis. Clin. Chem. Lab. Med. 38, 553–559. <https://doi.org/10.1515/CCLM.2000.081>
10. Meloun, M., Militký, J., Hill, M., Brereton, R. G. (2002) Crucial problems in regression modelling and their solutions. Analyst 127, 433–450. <https://doi.org/10.1039/b110779h>
11. Meloun, M., Hill, M., Militký, J., Vrbíková, J., Stanická, S., Škrha, J. (2004) New methodology of influential point detection in regression model building for the prediction of metabolic clearance rate of glucose. Clin. Chem. Lab. Med. 42, 311–322. <https://doi.org/10.1515/CCLM.2004.057>
12. Oltmanns, K. M., Dodt, B., Schultes, B., Raspe, H. H., Schweiger, U., Born, J., Fehm, H. L., Peters, A. (2006) Cortisol correlates with metabolic disturbances in a population study of type 2 diabetic patients. Eur. J. Endocrinol. 154(2), 325–331. <https://doi.org/10.1530/eje.1.02074>
13. Peuhkuri, K., Sihvola, N., Korpela, R. (2012) Dietary factors and fluctuating levels of melatonin. Food Nutr. Res. 56, 1–9. <https://doi.org/10.3402/fnr.v56i0.17252> <PubMed>
14. Rácz, B., Dušková, M., Vondra, K., Šrámková, M., Stárka, L. (2015) Daily profiles of steroid hormones and their metabolites related to food intake. Physiol. Res. 64, (Suppl. 2). (in press)
15. Reynolds, R. M., Walker, B. R., Syddall, H. E., Whorwood, C. B., Wood, P. J., Phillips, D. I. (2001) Elevated plasma cortisol in glucose-intolerant men: differences in responses to glucose and habituation to venepuncture. J. Clin. Endocrinol. Metab. 86(3), 1149–1153. <https://doi.org/10.1210/jcem.86.3.7300>
16. Röjdmark, S., Wetterberg, L. (1989) Short-term fasting inhibits the nocturnal melatonin secretion in healthy man. Clin. Endocrinol. (Oxf.) 30(4), 451–457. <https://doi.org/10.1111/j.1365-2265.1989.tb00445.x>
17. Sherman, H., Gutman, R., Chapnik, N., Meylan, J., le Coutre, J., Froy, O. (2011) Caffeine alters circadian rhythms and expression of disease and metabolic markers. Int. J. Biochem. Cell Biol. 43(5), 829–838. <https://doi.org/10.1016/j.biocel.2011.02.008>
18. Sierksma, A., Sarkola, T., Eriksson, C. J., van der Gaag, M. S., Grobbee, D. E., Hendriks, H. F. (2004) Effect of moderate alcohol consumption on plasma dehydroepiandrosterone sulfate, testosterone, and estradiol levels in middle-aged men and postmenopausal women: a diet-controlled intervention study. Alcohol Clin. Exp. Res. 28(5), 780–785. <https://doi.org/10.1097/01.ALC.0000125356.70824.81>
19. Slag, M. F., Ahmad, M., Gannon, M. C., Nuttall, F. Q. (1981) Meal stimulation of cortisol secretion: a protein induced effect. Metabolism 30(11), 1104–1108. <https://doi.org/10.1016/0026-0495(81)90055-X>
20. Spanagel, R., Rosenwasser, A. M., Schumann, G., Sarkar, D. K. (2005) Alcohol consumption and the body’s biological clock. Alcohol Clin. Exp. Res. 29(8), 1550–1557. <https://doi.org/10.1097/01.alc.0000175074.70807.fd>
21. Stárka, L., Rácz, B., Šrámková, M., Hill, M., Dušková, M. (2015) Daily profiles of dehydroepiandrosterone and its hydroxylated metabolites with respect to food intake. Prague Med. Rep. 116(1), 40–48. <https://doi.org/10.14712/23362936.2015.44>
22. Stimson, R. H., Mohd-Shukri, N. A., Bolton, J. L., Andrew, R., Reynolds, R. M., Walker, B. R. (2014) The postprandial rise in plasma cortisol in men is mediated by macronutrient-specific stimulation of adrenal and extra-adrenal cortisol production. J. Clin. Endocrinol. Metab. 99(1), 160–168. <https://doi.org/10.1210/jc.2013-2307> <PubMed>
23. Wake, D. J., Homer, N. Z., Andrew, R., Walker, B. R. (2006) Acute in vivo regulation of 11beta-hydroxysteroid dehydrogenase type 1 activity by insulin and intralipid infusions in humans. J. Clin. Endocrinol. Metab. 91(11), 4682–4688. <https://doi.org/10.1210/jc.2006-0819>
24. Weiss, E. P., Villareal, D. T., Fontana, L., Han, D. H., Holloszy, J. O. (2011) Dehydroepiandrosterone (DHEA) replacement decreases insulin resistance and lowers inflammatory cytokines in aging humans. Aging (Albany NY) 3(5), 533–542. <https://doi.org/10.18632/aging.100327> <PubMed>
front cover

ISSN 1214-6994 (Print) ISSN 2336-2936 (Online)

Archive