Prague Med. Rep. 2016, 117, 98-107
https://doi.org/10.14712/23362936.2016.10
The Response of C19 Δ5-steroids to ACTH Stimulation and Hypoglycemia in Insulin Tolerance Test for Adrenal Insufficiency
References
1. , T. A., Elhadd, T. A., Neary, R., Clayton, R. N. (1999) Comparison of the low dose short synacthen test (1 microg), the conventional dose short synacthen test (250 microg), and the insulin tolerance test for assessment of the hypothalamo-pituitary-adrenal axis in patients with pituitary disease. J. Clin. Endocrinol. Metab. 84(3), 838–843.
2. , R., Abdelmannan, D., Arafah, B. M. (2011) Biochemical diagnosis of adrenal insufficiency: the added value of dehydroepiandrosterone sulfate measurements. Endocr. Pract. 17(2), 261–270.
<https://doi.org/10.4158/EP10262.RA>
3. , E. E., Robel, P. (1998) Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) as neuroactive neurosteroids. Proc. Natl. Acad. Sci. U. S. A. 95(8), 4089–4091.
<https://doi.org/10.1073/pnas.95.8.4089>
<PubMed>
4. , M., Šimůnková, K., Vítků, J., Sosvorová, L., Jandíková, H., Pospíšilová, H., Šrámková, M., Kosák, M., Kršek, M., Hána, V., Žánová, M., Springer, D., Stárka, L. (2016) A comparison of salivary steroid levels during diagnostic tests for adrenal insufficiency. Prague Med. Rep. 117(1), 18–33.
<https://doi.org/10.14712/23362936.2016.2>
5. , T., Szalay, K. S., Szilágyi, G. (1985) Effect of ACTH and prolactin on dehydroepiandrosterone, its sulfate ester and cortisol production by normal and tumorous human adrenocortical cells. J. Steroid Biochem. 23(2), 153–157.
<https://doi.org/10.1016/0022-4731(85)90230-4>
6. , G. T., Allen, J., Pratt, H., Melby, J. C. (1985) Discordance of plasma DHEA-S, DHEA, and cortisol responses with various ACTH regimens. Metabolism 34(7), 631–636.
<https://doi.org/10.1016/0026-0495(85)90090-3>
7. , R., Stárka, L. (2000) Minireview: 16alfa-hydroxylated metabolites of dehydroepiandrosterone and their biological significance. Endocr. Regul. 34(3), 161–163.
8. , O., Chalbot, S., Alran, S., Morfin, R. (2007) Dehydroepiandrosterone 7alpha-hydroxylation in human tissues: possible interference with type 1 11beta-hydroxysteroid dehydrogenase-mediated processes. J. Steroid Biochem. Mol. Biol. 104(3–5), 326–333.
<https://doi.org/10.1016/j.jsbmb.2007.03.026>
9. , M., Pařízek, A., Cibula, D., Kancheva, R., Jirásek, J. E., Jirkovská, M., Velíková, M., Kubátová, J., Klímková, M., Pašková, A., Žižka, Z., Kancheva, L., Kazihnitková, H., Zamrazilová, L., Stárka, L. (2010) Steroid metabolome in fetal and maternal body fluids in human late pregnancy. J. Steroid Biochem. Mol. Biol. 122(4), 114–132.
<https://doi.org/10.1016/j.jsbmb.2010.05.007>
10. , M., Dušková, M., Stárka, L. (2015) Dehydroepiandrosterone, its metabolites and ion channels. J. Steroid Biochem. Mol. Biol. 145, 293–314.
<https://doi.org/10.1016/j.jsbmb.2014.05.006>
11. , P. D., Salek, F. S., Pittenger, A. L., Fabian, T. J., Frye, R. F. (1999) DHEA and DHEA-S: a review. J. Clin. Pharmacol. 39, 327–348.
<https://doi.org/10.1177/00912709922007903>
12. , F. (2010) DHEA, important source of sex steroids in men and even more in women. Prog. Brain Res. 182, 97–148.
<https://doi.org/10.1016/S0079-6123(10)82004-7>
13. , A., Bigelow, J. C. (2010) The 7-hydroxylation of dehydroepiandrosterone in rat brain. Steroids 75(6), 404–410.
<https://doi.org/10.1016/j.steroids.2010.02.003>
14. , R., Stárka, L. (2001) Neurosteroid 7-hydroxylation products in the brain. Int. Rev. Neurobiol. 46, 79–95.
<https://doi.org/10.1016/S0074-7742(01)46059-4>
15. , W. D., Parker, L. N. (1984–1985) Control of adrenal androgen production. Endocr. Res. 10(3–4), 617–630.
<https://doi.org/10.1080/07435808409036520>
16. , L. N., Odell, W. D. (1979) Evidence for existence of cortical androgen-stimulating hormone. Am. J. Physiol. 236(6), E616–E620.
17. , M. A., Trap, C., Malewiak, M. I., Morfin, R. (2004) Antioxidant effects of dehydroepiandrosterone and 7alpha-hydroxy-dehydroepiandrosterone in the rat colon, intestine and liver. Steroids 69(2), 137–144.
<https://doi.org/10.1016/j.steroids.2003.12.006>
18. , M. A., Muller, C., Hill, M., Morfin, R. (2006) Protection against dextran sodium sulfate-induced colitis by dehydroepiandrosterone and 7alpha-hydroxy-dehydroepiandrosterone in the rat. Steroids 71(3), 240–248.
<https://doi.org/10.1016/j.steroids.2005.10.009>
19. , J., Nakamura, Y., Satoh, F., Morimoto, R., Kennedy, M. R., Layman, L. C., Honma, S., Sasano, H., Rainey, W. E. (2013) Liquid chromatography-tandem mass spectrometry analysis of human adrenal vein 19-carbon steroids before and after ACTH stimulation. J. Clin. Endocrinol. Metab. 98(3), 1182–1188.
<https://doi.org/10.1210/jc.2012-2912>
<PubMed>
20. Kassem, L., El Sibai, K., Chaiban, J., Abdelmannan, D., Arafah, B. M. (2012) Measurements of serum DHEA and DHEA sulphate levels improve the accuracy of the low-dose cosyntropin test in the diagnosis of central adrenal insufficiency. J. Clin. Endocrinol. Metab. 97(10), 3655–3662.
<https://doi.org/10.1210/jc.2012-1806>
<PubMed>
21. , B., Dušátková, L., Zamrazilová, H., Matucha, P., Bičíková, M., Stárka, L. (2012) 7-oxygenated derivatives of dehydroepiandrosterone and obesity. Prague Med. Rep. 113(2), 147–155.
<https://doi.org/10.14712/23362936.2015.29>
22. , R. V. (1960) The secretion of sex hormones by the adrenal gland. Biochem. Soc. Symp. 18, 59–84.
23. , K., Dušková, M., Kosák, M., Kršek, M., Hána, V., Hill, M., Jandíková, H., Pospíšilová, H., Šrámková, M., Bifulco, E., Stárka, L. (2015) Response of cortisol metabolites in the insulin tolerance test and Synacthen tests. Physiol. Res. 64, S237–S246 (Suppl. 2).
24. , L., Dušková, M., Hill, M. (2015) Dehydroepiandrosterone as a neurosteroid. J. Steroid Biochem. Mol. Biol. 145, 254–260.
<https://doi.org/10.1016/j.jsbmb.2014.03.008>
25. , D. R., Ahlem, C. N., Morgan, E., Reading, C. L., Onizuka, N., Frincke, J. M. (2011) Phase I and Phase II clinical trials of androst-5-ene-3β,7β,17β-triol. Am. J. Transl. Res. 3(3), 275–283.


