Prague Med. Rep. 2018, 119, 137-147

https://doi.org/10.14712/23362936.2019.1

The Effect of Sensory Innervation on the Inorganic Component of Bones and Teeth; Experimental Denervation – Review

Ivo Němec1, Václav Smrčka2,3, Jaroslav Pokorný4

1Department of Otorhinolaryngology and Maxillofacial Surgery, Third Faculty of Medicine, Charles University and Military University Hospital Prague, Prague, Czech Republic
2Department of Plastic Surgery, First Faculty of Medicine, Charles University and Na Bulovce Hospital, Prague, Czech Republic
3Institute for History of Medicine and Foreign Languages, First Faculty of Medicine, Charles University, Prague, Czech Republic
4Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic

Received May 9, 2018
Accepted January 31, 2019

References

1. Abd-Elmeguid, A., Yu, D. C. (2009) Dental pulp neurophysiology: Part 1. Clinical and diagnostic implications. J. Can. Dent. Assoc. 75, 55–59.
2. Abou Neel, E. A., Aljabo, A., Strange, A., Ibrahim, S., Coathup, M., Young, A. M., Bozec, L., Mudera, V. (2016) Demineralization-remineralization dynamics in teeth and bone. Int. J. Nanomedicine 11, 4743–4763. <https://doi.org/10.2147/IJN.S107624> <PubMed>
3. Adam, C., Llorens, A., Baroukh, B., Cherruau, M., Saffar, J. L. (2000) Effects of capsaicin-induced sensory denervation on osteoclastic resorption in adult rats. Exp. Physiol. 85, 62–66. <https://doi.org/10.1111/j.1469-445X.2000.01930.x>
4. Akopian, A., Demulder, A., Ouriaghli, F., Corazza, F., Fondu, P., Bergmann, P. (2000) Effects of CGRP on human osteoclast-like cell formation: a possible connection with the bone loss in neurological disorders? Peptides 21, 559–564. <https://doi.org/10.1016/S0196-9781(00)00185-6>
5. Apel, P. J., Crane, D., Northam, C. N., Callahan, M., Smith, T. L., Teasdall, R. D. (2009) Effect of selective sensory denervation on fracture-healing: an experimental study of rats. J. Bone Joint Surg. Am. 91, 2886–2895. <https://doi.org/10.2106/JBJS.H.01878>
6. Arora, M., Chan, S. W., Ryan, C. G., Kennedy, B. J., Walker, D. M. (2005) Spatial distribution of lead in enamel and coronal dentine of wistar rats. Biol. Trace Elem. Res. 105, 159–170. <https://doi.org/10.1385/BTER:105:1-3:159>
7. Buyukkaplan, U. S., Guldag, M. U. (2012) Evaluation of mandibular bone mineral density using the dual-energy X-ray absorptiometry technique in edentulous subjects living in an endemic fluorosis region. Dentomaxillofac. Radiol. 41, 405–410. <https://doi.org/10.1259/dmfr/20380362> <PubMed>
8. Byers, M. R., Suzuki, H., Maeda, T. (2003) Dental neuroplasticity, neuro-pulpal interactions, and nerve regeneration. Microsc. Res. Tech. 60, 503–515. <https://doi.org/10.1002/jemt.10291>
9. Chenu, C. (2004) Role of innervation in the control of bone remodeling. J. Musculoskelet. Neuronal. Interact. 4, 132–134.
10. Cornish, J., Callon, K. E., Lin, C. Q., Xiao, C. L., Gamble, G. D., Cooper, G. J., Reid, I. R. (1999) Comparison of the effects of calcitonin gene-related peptide and amylin on osteoblasts. J. Bone Miner. Res. 14, 1302–1309. <https://doi.org/10.1359/jbmr.1999.14.8.1302>
11. Curzon, M. E., Crocker, D. C. (1978) Relationships of trace elements in human tooth enamel to dental caries. Arch. Oral Biol. 23, 647–653. <https://doi.org/10.1016/0003-9969(78)90189-9>
12. Curzon, M. E. J., Cutress, T. W. (1983) Trace Elements and Dental Disease. John Wright PSG Inc., Boston.
13. de Jong, W. C., van Ruijven, L. J., Brugman, P., Langenbach, G. E. (2013) Variation of the mineral density in cortical bone may serve to keep strain amplitudes within a physiological range. Bone 55, 391–399. <https://doi.org/10.1016/j.bone.2013.04.026>
14. Dermience, M., Lognay, G., Mathieu, F., Goyens, P. (2015) Effects of thirty elements on bone metabolism. J. Trace Elem. Med. Biol. 32, 86–106. <https://doi.org/10.1016/j.jtemb.2015.06.005>
15. Ding, Y., Arai, M., Kondo, H., Togari, A. (2010) Effect of capsaicin-induced sensory denervation on bone metabolism in adult rats. Bone 46, 1591–1596. <https://doi.org/10.1016/j.bone.2010.02.022>
16. Elefteriou, F. (2005) Neuronal signaling and the regulation of bone remodeling. Cell. Mol. Life Sci. 62, 2339–2349. <https://doi.org/10.1007/s00018-005-5175-3>
17. Elefteriou, F. (2008) Regulation of bone remodeling by the central and peripherial nervous system. Arch. Biochem. Biophys. 473, 231–236. <https://doi.org/10.1016/j.abb.2008.03.016> <PubMed>
18. Elefteriou, F., Campbell, P., Ma, Y. (2014) Control of bone remodeling by the peripheral sympathetic nervous system. Calcif. Tissue Int. 94, 140–151. <https://doi.org/10.1007/s00223-013-9752-4> <PubMed>
19. Fischer, A., Wiechuła, D., Postek-Stefańska, L., Kwapuliński, J. (2009) Concentrations of metals in maxilla and mandible deciduous and permanent human teeth. Biol. Trace Elem. Res. 132, 19–26. <https://doi.org/10.1007/s12011-009-8383-0>
20. Fischer, A., Wiechuła, D., Przybyła-Misztela, C. (2013) Changes of concentrations of elements in deciduous teeth with age. Biol. Trace Elem. Res. 154, 427–432. <https://doi.org/10.1007/s12011-013-9744-2> <PubMed>
21. Fristad, I. (1997) Dental innervation: functions and plasticity after peripheral injury. Acta Odontol. Scand. 55, 236–254. <https://doi.org/10.3109/00016359709115423>
22. García-Castellano, J. M., Díaz-Herrera, P., Morcuende, J. A. (2000) Is bone a target-tissue for the nervous system? New advances on the understanding of their interactions. Iowa Orthop. J. 20, 49–58.
23. Ghadimi, E., Eimar, H., Marelli, B., Nazhat, S. N., Asgharian, M., Vali, H., Tamimi, F. (2013) Trace elements can influence the physical properties of tooth enamel. Springerplus 2, 499. <https://doi.org/10.1186/2193-1801-2-499> <PubMed>
24. Ghassemi-Tary, B., Cua-Benward, G. B. J. (1992) The effect of inferior alveolar neurotomy on mandibular growth in the rat. J. Clin. Pediatr. Dent. 17, 19–23.
25. Harada, F., Hoshino, N., Hanada, K., Kawano, Y., Atsumi, Y., Wakisaka, S., Maeda, T. (2003) The involvement of brain-derived neurotrophic factor (BDNF) in the regeneration of periodontal Ruffini endings following transection of the inferior alveolar nerve. Arch. Histol. Cytol. 66,183–194. <https://doi.org/10.1679/aohc.66.183>
26. Hara-Irie, F., Amizuka, N., Ozawa, H. (1996) Immunohistochemical and ultrastructural localization of CGRP-positive nerve fibers at the epiphyseal trabecules facing the growth plate of rat femurs. Bone 18, 29–39. <https://doi.org/10.1016/8756-3282(95)00425-4>
27. He, H., Tan, Y., Yang, M. (2010) Effect of substance P in mandibular osteotomies after amputation of the inferior alveolar nerve. J. Oral Maxillofac. Surg. 68, 2047–2052. <https://doi.org/10.1016/j.joms.2010.02.016>
28. He, H., Chai, J., Zhang, S., Ding, L., Yan, P., Du, W., Yang, Z. (2016) CGRP may regulate bone metabolism through stimulating osteoblast differentiation and inhibiting osteoclast formation. Mol. Med. Rep. 13, 3977–3984. <https://doi.org/10.3892/mmr.2016.5023>
29. Heffner, M. A., Anderson, M. J., Yeh, G. C., Genetos, D. C., Christiansen, B. A. (2014) Altered bone development in a mouse model of peripheral sensory nerve inactivation. J. Musculoskelet. Neuronal Interact. 14, 1–9.
30. Hichijo, N., Tanaka, E., Kawai, N., van Ruijven, L. J., Langenbach, G. E. J. (2015) Effects of decreased occlusal loading during growth on the mandibular bone characteristics. PLoS One 10(6), e0129290. <https://doi.org/10.1371/journal.pone.0129290> <PubMed>
31. Hill, E. L., Turner, R., Elde, R. (1991) Effects of neonatal sympathectomy and capsaicin treatment on bone remodeling in rats. Neuroscience 44, 747–755. <https://doi.org/10.1016/0306-4522(91)90094-5>
32. Hirayama, M., Iijima, S., Iwashita, M., Akiyama, S., Takaku, Y., Yamazaki, M., Omori, T., Yumoto, S., Shimamura, T. (2011) Aging effects of major and trace elements in rat bones and their mutual correlations. J. Trace Elem. Med. Biol. 25, 73–84. <https://doi.org/10.1016/j.jtemb.2011.02.002>
33. Hiroshima, K., Maeda, T., Hanada, K., Wakisaka, S. (1998) Calretinin-like immunoreactivity in the regenerating periodontal Ruffini endings of the rat incisor following injury to the inferior alveolar nerve. Brain Res. 807, 218–221. <https://doi.org/10.1016/S0006-8993(98)00799-9>
34. Hoffman, D. R., Tade, W. H. (1972) Improved technique for sectioning the inferior alveolar nerve in rats. J. Dent. Res. 51, 668. <https://doi.org/10.1177/00220345720510027401>
35. Jacobsen, E. B., Heyeraas, K. J. (1996) Effect of capsaicin treatment or inferior alveolar nerve resection on dentine formation and calcitonin gene-related peptide- and substance P-immunoreactive nerve fibres in rat molar pulp. Arch. Oral Biol. 41, 1121–1131. <https://doi.org/10.1016/S0003-9969(96)00092-1>
36. Kassab, A., Hage, M., Jabbur, S. J., Chidiac, J. J. (2013) Modified technique for the exposure of the inferior alveolar nerve in rats. J. Pharmacol. Toxicol. Methods 67, 182–186. <https://doi.org/10.1016/j.vascn.2013.01.006>
37. Katić, V., Vujicić, G., Ivanković, D., Stavljenić, A., Vukicević, S. (1991) Distribution of structural and trace elements in human temporal bone. Biol. Trace Elem. Res. 29, 35–43. <https://doi.org/10.1007/BF03032672>
38. Konttinen, Y., Imai, S., Suda, A. (1996) Neuropeptides and the puzzle of bone remodeling. State of the art. Acta Orthop. Scand. 67, 632–639. <https://doi.org/10.3109/17453679608997772>
39. Krall, E. A., Garcia, R. I., Dawson-Hughes, B. (1996) Increased risk of tooth loss is related to bone loss at the whole body, hip, and spine. Calcif. Tissue Int. 59, 433–437. <https://doi.org/10.1007/BF00369206>
40. Lane, D. W., Peach, D. F. (1997) Some observations on the trace element concentrations in human dental enamel. Biol. Trace Elem. Res. 60, 1–11. <https://doi.org/10.1007/BF02783305>
41. Lanocha, N., Kalisinska, E., Kosik-Bogacka, D. I., Budis, H., Sokolowski, S., Bohatyrewicz, A. (2012) Concentrations of trace elements in bones of the hip joint from patients after hip replacement surgery. J. Trace Elem. Med. Biol. 26, 20–25. <https://doi.org/10.1016/j.jtemb.2011.11.006>
42. Lerner, U. H., Persson, E., Lundberg, P. (2008) Kinins and neuro-osteogenic factors. In: Principles of Bone Biology, 3rd Edition. Bilezikian, J. P., Raisz, L. G., Martin, T. J., pp. 1025–1057, Academic Press, San Diego.
43. Lüllmann-Rauch, R. (2012) Histologie. Překlad 3. vydání. Grada Publishing, Praha. (in Czech)
44. Lv, L., Wang, Y., Zhang, J., Zhang, T., Li, S. (2014) Healing of periodontal defects and calcitonin gene related peptide expression following inferior alveolar nerve transection in rats. J. Mol. Histol. 45, 311–320. <https://doi.org/10.1007/s10735-013-9551-2>
45. Maciejewska, K., Drzazga, Z., Kaszuba, M. (2014) Role of trace elements (Zn, Sr, Fe) in bone development: energy dispersive X-ray fluorescence study of rat bone and tooth tissue. Biofactors 40, 425–435. <https://doi.org/10.1002/biof.1163>
46. Nelson, S. J. (2015) Wheeler’s Dental Anatomy, Physiology, and Occlusion, 10th Edition. Elsevier Saunders, St. Louis.
47. Offley, S. C., Guo, T. Z., Wei, T., Clark, J. D., Vogel, H., Lindsey, D. P., Jacobs, C. R., Yao, W., Lane, N. E., Kingery, W. S. (2005) Capsaicin-sensitive sensory neurons contribute to the maintenance of trabecular bone integrity. J. Bone Miner. Res. 20, 257–267. <https://doi.org/10.1359/JBMR.041108>
48. Oliveira, J. P., Querido, W., Caldas, R. J., Campos, A. P., Abraçado, L. G., Farina, M. (2012) Strontium is incorporated in different levels into bones and teeth of rats treated with strontium ranelate. Calcif. Tissue Int. 91, 186–195. <https://doi.org/10.1007/s00223-012-9625-2>
49. Patel, M. S., Elefteriou, F. (2007) The new field of neuroskeletal biology. Calcif. Tissue Int. 80, 337–347. <https://doi.org/10.1007/s00223-007-9015-3>
50. Reitznerová, E., Amarasiriwardena, D., Kopcáková, M., Barnes, R. M. (2000) Determination of some trace elements in human tooth enamel. Fresenius J. Anal. Chem. 367, 748–754. <https://doi.org/10.1007/s002160000461>
51. Retief, D. H., Dreyer, C. J. (1969) Sectioning of the inferior dental nerve in rats. J. Dent. Res. 48, 969. <https://doi.org/10.1177/00220345690480056701>
52. Sample, S. J., Hao, Z., Wilson, A. P., Muir, P. (2011) Role of calcitonin gene-related peptide in bone repair after cyclic fatigue loading. PLoS One 6, e20386. <https://doi.org/10.1371/journal.pone.0020386> <PubMed>
53. Sarko, J. (2005) Bone and mineral metabolism. Emerg. Med. Clin. North Am. 23, 703–721. <https://doi.org/10.1016/j.emc.2005.03.017>
54. Smrčka, V. (2005) Trace Elements in Bone Tissue. Karolinum Press, Praha.
55. Standring, S. (2016) Gray’s Anatomy: The Anatomical Basis of Clinical Practice, Forty-first Edition. Elsevier Limited, New York.
56. Stewart, J. M. (1965) Sectioning the inferior alveolar nerve in rats. J. Dent. Res. 44, 830. <https://doi.org/10.1177/00220345650440043801>
57. Tanaka, E., Sano, R., Kawai, N., Langenbach, G. E., Brugman, P., Tanne, K., van Eijden, T. M. (2007) Effect of food consistency on the degree of mineralization in the rat mandible. Ann. Biomed. Eng. 35, 1617–1621. <https://doi.org/10.1007/s10439-007-9330-x>
58. Torneck, C. D., Harnett, B. (1971) Surgical method for unilateral removal of the inferior dental nerve in the rat. J. Dent. Res. 50, 167. <https://doi.org/10.1177/00220345710500011801>
59. Vrbič, V., Štupar, J., Byrne, A. R. (1987) Trace element content of primary and permanent tooth enamel. Caries Res. 21, 37–39. <https://doi.org/10.1159/000261000>
60. Wang, L., Banu, J., McMahan, C. A., Kalu, D. N. (2001) Male rodent model of age-related bone loss in men. Bone 29, 141–148. <https://doi.org/10.1016/S8756-3282(01)00483-5>
61. Wilhelm, Z. (2007) Co je dobré vědět o vápníku. Prakt. Lékáren. 4, 184–189.
62. Wu, Q., Yang, B., Cao, C., Guang, M., Gong, P. (2016) Age-dependent impact of inferior alveolar nerve transection on mandibular bone metabolism and the underlying mechanisms. J. Mol. Histol. 47, 579–586. <https://doi.org/10.1007/s10735-016-9697-9>
63. Yamaguchi, M., Inamoto, K., Suketa, Y. (1986) Effect of essential trace metals on bone metabolism in weanling rats: comparison with zinc and other metals’ actions. Res. Exp. Med. (Berl.) 186, 337–342. <https://doi.org/10.1007/BF01852099>
64. Yamashiro, T., Fujiyama, K., Fujiyoshi, Y., Inaguma, N., Takano-Yamamoto, T. (2000) Inferior alveolar nerve transection inhibits increase in osteoclast appearance during experimental tooth movement. Bone 26, 663–669. <https://doi.org/10.1016/S8756-3282(00)00282-9>
65. Yu, X., Lv, L., Zhang, J., Zhang, T., Xiao, C., Li, S. (2015) Expression of neuropeptides and bone remodeling-related factors during periodontal tissue regeneration in denervated rats. J. Mol. Histol. 46, 195–203. <https://doi.org/10.1007/s10735-015-9611-x>
66. Zaichick, S., Zaichick, V. (2010a) The effect of age and gender on 38 chemical element contents in human iliac crest investigated by instrumental neutron activation analysis. J. Trace Elem. Med. Biol. 24, 1–6. <https://doi.org/10.1016/j.jtemb.2009.07.002>
67. Zaichick, S., Zaichick, V. (2010b) The effect of age and gender on 38 chemical element contents in human femoral neck investigated by instrumental neutron activation analysis. Biol. Trace Elem. Res. 137, 1–12. <https://doi.org/10.1007/s12011-009-8554-z>
68. Zaichick, S., Zaichick, V., Karandashev, V. K., Moskvina, I. R. (2011) The effect of age and gender on 59 trace-element contents in human rib bone investigated by inductively coupled plasma mass spectrometry. Biol. Trace Elem. Res. 143, 41–57. <https://doi.org/10.1007/s12011-010-8837-4>
69. Zaichick, V., Zaichick, S., Karandashev, V., Nosenko, S. (2009) The effect of age and gender on Al, B, Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Sr, V, and Zn contents in rib bone of healthy humans. Biol. Trace Elem. Res. 129, 107–115. <https://doi.org/10.1007/s12011-008-8302-9>
70. Zaidi, M., Fuller, K., Bevis, P. J., GainesDas, R. E., Chambers, T. J., MacIntyre, I. (1987) Calcitonin gene-related peptide inhibits osteoclastic bone resorption: a comparative study. Calcif. Tissue Int. 40, 149–154. <https://doi.org/10.1007/BF02555699>
71. Žofková, I. (2012) Osteologie a Kalcium-fosfátový Metabolismus. Grada Publishing, Praha.
front cover

ISSN 1214-6994 (Print) ISSN 2336-2936 (Online)

Archive