Prague Med. Rep. 2019, 120, 52-63
https://doi.org/10.14712/23362936.2019.10
Pharmacokinetics of Dasatinib
References
1. 2011) Pediatric phase I trial and pharmacokinetic study of dasatinib: A report from the children’s oncology group phase I consortium. J. Clin. Oncol. 29, 839–844.
< , R., Blaney, S. M., Strauss, L. C., Balis, F. M., Shusterman, S., Ingle, A. M., Agrawal, S., Sun, J., Wright, J. J., Adamson, P. C. (https://doi.org/10.1200/JCO.2010.30.7231>
<PubMed>
2. AstraZeneca Pharmaceuticals (2012) Prilosec – Full prescribing information. Available at: https:// www.accessdata.fda.gov/drugsatfda_docs/label/2012/019810s096lbl.pdf.
3. 2002) Mammalian ABC transporters in health and disease. Annu. Rev. Biochem. 71, 537–592.
< , P., Elferink, R. O. (https://doi.org/10.1146/annurev.biochem.71.102301.093055>
4. Bristol-Myers Squibb (2006) Sprycel: Summary of product characteristics. Available at: https://www.ema. europa.eu/en/documents/product-information/sprycel-epar-product-information_en.pdf.
5. Bristol-Myers Squibb (2017) Sprycel: Full prescribing information. Available at: https://packageinserts.bms. com/pi/pi_sprycel.pdf.
6. Bristol-Myers Squibb Pharmaceutical Research Institute (2007) Investigator brochure: Dasatinib (BMS-354825). Available at: http://spirit-cml.org/isf/referencesafetyinformation/1.2%20Dasatinib%20RSI%20-%20 Dasatinib%20IB%20(Nov07)%20superseded.pdf.
7. Chandani, R., He, J., Trabelsi, F. (2017) Atypical pharmacokinetic profiles observed with dasatinib reference listed drug product in bioequivalence studies. Presented at the AAPS Annual Meeting, San Diego. Available at: https://www.biopharmaservices.com/wp-content/uploads/2018/06/Poster-1-Dasatinib -final-AAPS-2017.pdf.
8. 2009) P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib. J. Pharmacol. Exp. Ther. 330, 956–963.
< , Y., Agarwal, S., Shaik, N. M., Chen, C., Yang, Z., Elmquist, W. F. (https://doi.org/10.1124/jpet.109.154781>
9. 2008a) Biotransformation of [14C]dasatinib: in vitro studies in rat, monkey, and human and disposition after administration to rats and monkeys. Drug Metab. Dispos. 36, 1341–1356.
< , L. J., Cui, D., Li, W., Barros, A. Jr., Arora, V. K., Zhang, H., Wang, L., Zhang, D., Manning, J. A., He, K., Fletcher, A. M., Ogan, M., Lago, M., Bonacorsi, S. J., Humphreys, W. G., Iyer, R. A. (https://doi.org/10.1124/dmd.107.018234>
10. 2008b) Metabolism and disposition of dasatinib after oral administration to humans. Drug Metab. Dispos. 36, 1357–1364.
< , L. J., Cui, D., Wu, C., Luo, R., Manning, J. A., Bonacorsi, S. J., Lago, M., Allentoff, A., Lee, F. Y., McCann, B., Galbraith, S., Reitberg, D. P., He, K., Barros, A. Jr., Blackwood-Chirchir, A., Humphreys, W. G., Iyer, R. A. (https://doi.org/10.1124/dmd.107.018267>
11. 1999) Dynamic regulation of gastric surface pH by luminal pH. J. Clin. Invest. 103, 605–612.
< , S., Tanaka, S., Kaunitz, J. D., Montrose, M. H. (https://doi.org/10.1172/JCI5217>
<PubMed>
12. 2002) Protein kinases – The major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1, 309–315.
< , P. (https://doi.org/10.1038/nrd773>
13. 2008) Importance of characterizing determinants of variability in exposure: Application to dasatinib in subjects with chronic myeloid leukemia. J. Clin. Pharmacol. 48, 1254–1269.
< , G., Pfister, M., Blackwood-Chirchir, A., Roy, A. (https://doi.org/10.1177/0091270008320604>
14. 2009) Phase I dose-escalation and pharmacokinetic study of dasatinib in patients with advanced solid tumors. Clin. Cancer Res. 15, 6232–6240.
< , G. D., Lo Russo, P., MacPherson, I. R., Wang, D., Morgan, J. A., Brunton, V. G., Paliwal, P., Agrawal, S., Voi, M., Evans, T. R. (https://doi.org/10.1158/1078-0432.CCR-09-0224>
15. 2009) Phase I study of the effect of gastric acid pH modulators on the bioavailability of oral dasatinib in healthy subjects. J. Clin. Pharmacol. 49, 700–709.
< , T., Luo, F. R., Agrawal, S., Sanil, A., Manning, J., Li, T., Blackwood-Chirchir, A., Bertz, R. (https://doi.org/10.1177/0091270009333854>
16. 2013) Contribution of ABCC4-mediated gastric transport to the absorption and efficacy of dasatinib. Clin. Cancer Res. 19, 4359–4370.
< , B. D., Hu, S., Fujita, K. I., Li, L., Gibson, A. A., Janke, L. J., Williams, R. T., Schuetz, J. D., Sparreboom, A., Baker, S. D. (https://doi.org/10.1158/1078-0432.CCR-13-0980>
<PubMed>
17. 2008) Effective dasatinib uptake may occur without human organic cation transporter 1 (hOCT1): Implications for the treatment of imatinib-resistant chronic myeloid leukemia. Blood 112, 3348–3354.
< , A., Davies, A., Lucas, C. M., Harris, R. J., Pirmohamed, M., Clark, R. E. (https://doi.org/10.1182/blood-2007-10-116236>
<PubMed>
18. 2008) Lacteal secretion, fetal and maternal tissue distribution of dasatinib in rats. Drug Metab. Dispos. 36, 2564–2570.
< , K., Lago, M. W., Iyer, R. A., Shyu, W. C., Humphreys, W. G., Christopher, L. J. (https://doi.org/10.1124/dmd.108.022764>
19. 2009) Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: Implications for altered anti-cancer effects and pharmacological properties. Br. J. Pharmacol. 158, 1153–1164.
< , C., Ozvegy-Laczka, C., Apati, A., Magocsi, M., Nemet, K., Orfi, L., Keri, G., Katona, M., Takats, Z., Varadi, A., Szakacs, G., Sarkadi, B. (https://doi.org/10.1111/j.1476-5381.2009.00383.x>
<PubMed>
20. 2008) Dasatinib cellular uptake and efflux in chronic myeloid leukemia cells: therapeutic implications. Clin. Cancer Res. 14, 3881–3888.
< , D. K., Saunders, V., Hewett, D., Frede, A., Zrim, S., Dang, P., Eadie, L., To, L. B., Melo, J., Kumar, S., Hughes, T. P., White, D. L. (https://doi.org/10.1158/1078-0432.CCR-07-5095>
21. 1991) Expression and functional role of the proto-oncogene c-kit in acute myeloblastic leukemia cells. Blood 78, 2962–2968.
, H., Kanakura, Y., Tamaki, T., Kuriu, A., Kitayama, H., Ishikawa, J., Kanayama, Y., Yonezawa, T., Tarui, S., Griffin, J. D. (
22. 2016) Pharmacokinetics and pharmacodynamics of dasatinib in the chronic phase of newly diagnosed chronic myeloid leukemia. Eur. J. Clin. Pharmacol. 72, 185–193.
< , Y., Murai, K., Yamaguchi, K., Miyagishima, T., Shindo, M., Ogawa, K., Nagashima, T., Sato, S., Watanabe, R., Yamamoto, S., Hirose, T., Saitou, S., Yonezumi, M., Kondo, T., Kato, Y., Mochizuki, N., Ohno, K., Kishino, S., Kubo, K., Oyake, T., Ito, S. (https://doi.org/10.1007/s00228-015-1968-y>
23. 2010) Phase 1 pharmacokinetic and drug-interaction study of dasatinib in patients with advanced solid tumors. Cancer 116, 1582–1591.
< , F. M., Agrawal, S., Burris, H., Rosen, L., Dhillon, N., Hong, D., Blackwood-Chirchir, A., Luo, F. R., Sy, O., Kaul, S., Chiappori, A. A. (https://doi.org/10.1002/cncr.24927>
24. 2008) Preclinical pharmacokinetics and in vitro metabolism of dasatinib (BMS-354825): A potent oral multi-targeted kinase inhibitor against SRC and BCR-ABL. Cancer Chemother. Pharmacol. 61, 365–376.
< , A. V., Wang, J., Lee, F. Y., Marathe, P. H. (https://doi.org/10.1007/s00280-007-0478-8>
25. 2009) Brain accumulation of dasatinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by elacridar treatment. Clin. Cancer Res. 15, 2344–2351.
< , J. S., van Waterschoot, R. A., van Tilburg, V. A., Hillebrand, M. J., Lankheet, N., Rosing, H., Beijnen, J. H., Schinkel, A. H. (https://doi.org/10.1158/1078-0432.CCR-08-2253>
26. 2013) Synthesis and biopharmaceutical studies of JLTN as potential dasatinib prodrug. Chem. Pharm. Bull. (Tokyo) 61, 877–881.
< , F., Lang, L. W., Jiang, J., Lu, H. J., Wang, J. M., Wang, S. C. (https://doi.org/10.1248/cpb.c13-00248>
27. 2004) Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl) -piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J. Med. Chem. 47, 6658–6661.
< , L. J., Lee, F. Y., Chen, P., Norris, D., Barrish, J. C., Behnia, K., Castaneda, S., Cornelius, L. A., Das, J., Doweyko, A. M., Fairchild, C., Hunt, J. T., Inigo, I., Johnston, K., Kamath, A., Kan, D., Klei, H., Marathe, P., Pang, S., Peterson, R., Pitt, S., Schieven, G. L., Schmidt, R. J., Tokarski, J., Wen, M. L., Wityak, J., Borzilleri, R. M. (https://doi.org/10.1021/jm049486a>
28. 2013) Investigation of the rat model for preclinical evaluation of pH-dependent oral absorption in humans. Mol. Pharm. 10, 3997–4004.
< , J. W., Chen, J. Z., Hau, J., Imperio, J., Coraggio, M., Liu, L., Wong, H. (https://doi.org/10.1021/mp400283j>
29. 2006) Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure. Clin. Cancer Res. 12, 7180–7186.
< , F. R., Yang, Z., Camuso, A., Smykla, R., McGlinchey, K., Fager, K., Flefleh, C., Castaneda, S., Inigo, I., Kan, D., Wen, M. L., Kramer, R., Blackwood-Chirchir, A., Lee, F. Y. (https://doi.org/10.1158/1078-0432.CCR-06-1112>
30. 2012) H2-receptor antagonist influences dasatinib pharmacokinetics in a patient with Philadelphia-positive acute lymphoblastic leukemia. Cancer Chemother. Pharmacol. 70, 351–352.
< , A., Takahashi, N., Miura, M., Niioka, T., Kawakami, K., Matsunaga, T., Sawada, K. (https://doi.org/10.1007/s00280-012-1900-4>
31. 2011) Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol. Cancer Ther. 10, 531–539.
< , T., Giacomini, K. M. (https://doi.org/10.1158/1535-7163.MCT-10-0731>
<PubMed>
32. Mylan Pharmaceuticals (2011) Mylan-famotidine – Product monograph. Available at: https://pdf.hres.ca /dpd_pm/00014548.PDF.
33. Novartis (2018) Gleevec: Full prescribing information. Available at: https://www.pharma.us.novartis.com /sites/www.pharma.us.novartis.com/files/gleevec_tabs.pdf.
34. 2005) In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 65, 4500–4505.
< , T., Walters, D. K., Stoffregen, E. P., Jia, T., Manley, P. W., Mestan, J., Cowan-Jacob, S. W., Lee, F. Y., Heinrich, M. C., Deininger, M. W., Druker, B. J. (https://doi.org/10.1158/0008-5472.CAN-05-0259>
35. 2010) Antacids and dietary supplements with an influence on the gastric pH increase the risk for food sensitization. Clin. Exp. Allergy 40, 1091–1098.
< , I., Herzog, R., Wallmann, J., Szalai, K., Brunner, R., Lukschal, A., Karagiannis, P., Diesner, S. C., Jensen-Jarolim, E. (https://doi.org/10.1111/j.1365-2222.2010.03468.x>
<PubMed>
36. 2013) Pharmacokinetics and absorption of the anticancer agents dasatinib and GDC-0941 under various gastric conditions in dogs – Reversing the effect of elevated gastric pH with betaine HCl. Mol. Pharm. 10, 4024–4031.
< , J., Dalziel, G., Dean, B., Ware, J. A., Salphati, L. (https://doi.org/10.1021/mp400356m>
37. 2016) Clinical safety and efficacy of nilotinib or dasatinib in patients with newly diagnosed chronic-phase chronic myelogenous leukemia and pre-existing liver and/or renal dysfunction. Clin. Lymphoma Myeloma Leuk. 16, 152–162.
< , K., Lahoti, A., Jabbour, E., Jain, P., Pierce, S., Borthakur, G., Daver, N., Kadia, T., Pemmaraju, N., Ferrajoli, A., O’Brien, S., Kantarjian, H., Cortes, J. (https://doi.org/10.1016/j.clml.2015.12.003>
<PubMed>
38. 2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401.
< , N. P., Tran, C., Lee, F. Y., Chen, P., Norris, D., Sawyers, C. L. (https://doi.org/10.1126/science.1099480>
39. 2019) Gastric pH in rats: Key determinant for preclinical evaluation of pH-dependent oral drug absorption. Prague Med. Rep. 120, 5–9.
< , M., Kutinová-Canová, N., Ryšánek, P., Hořínková, J., Moškořová, D., Slanař, O. (https://doi.org/10.14712/23362936.2019.5>
40. 1991) Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science 253, 562–565.
< , C., Skorski, T., Nicolaides, N. C., Manzella, L., Malaguarnera, L., Venturelli, D., Gewirtz, A. M., Calabretta, B. (https://doi.org/10.1126/science.1857987>
41. 2012) Influence of H2-receptor antagonists and proton pump inhibitors on dasatinib pharmacokinetics in Japanese leukemia patients. Cancer Chemother. Pharmacol. 69, 999–1004.
< , N., Miura, M., Niioka, T., Sawada, K. (https://doi.org/10.1007/s00280-011-1797-3>
42. 2011) Phase I study of dasatinib (BMS-354825) in Japanese patients with solid tumors. Cancer Sci. 102, 2058–2064.
< , S., Miyazaki, M., Okamoto, I., Ito, Y., Ueda, K., Seriu, T., Nakagawa, K., Hatake, K. (https://doi.org/10.1111/j.1349-7006.2011.02041.x>
43. 2013) Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) gene dosage on plasma pharmacokinetics and brain accumulation of dasatinib, sorafenib, and sunitinib. J. Pharmacol. Exp. Ther. 346, 486–494.
< , S. C., de Vries, N., Sparidans, R. W., Wagenaar, E., Beijnen, J. H., Schinkel, A. H. (https://doi.org/10.1124/jpet.113.205583>
44. 2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104, 3739–3745.
< , J., Wang, L., Clark, R. E., Pirmohamed, M. (https://doi.org/10.1182/blood-2003-12-4276>
45. 1997) Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13, 513–609.
< , S. M., Brugge, J. S. (https://doi.org/10.1146/annurev.cellbio.13.1.513>
46. 2010) Dasatinib, even at low doses, is an effective second-line therapy for chronic myeloid leukemia patients resistant or intolerant to imatinib. Results from a real life-based Italian multicenter retrospective study on 114 patients. Am. J. Hematol. 85, 960–963.
< , G., Breccia, M., Gozzini, A., Specchia, G., Montefusco, E., Morra, E., Annunziata, M., Camera, A., Cavazzini, F., Stagno, F., Pregno, P., Usala, E., Santini, V., Piccaluga, P. P., Isidori, A. (https://doi.org/10.1002/ajh.21871>
47. 2013) Gastric reacidification with betaine HCl in healthy volunteers with rabeprazole-induced hypochlorhydria. Mol. Pharm. 10, 4032–4037.
< , M. R., Frymoyer, A. R., Smelick, G. S., Frassetto, L. A., Budha, N. R., Dresser, M. J., Ware, J. A., Benet, L. Z. (https://doi.org/10.1021/mp4003738>
<PubMed>
48. 2014) The use of betaine HCl to enhance dasatinib absorption in healthy volunteers with rabeprazole-induced hypochlorhydria. AAPS J. 16, 1358–1365.
< , M. R., Frymoyer, A., Benet, L. Z., Smelick, G. S., Frassetto, L. A., Ding, X., Dean, B., Salphati, L., Budha, N., Jin, J. Y., Dresser, M. J., Ware, J. A. (https://doi.org/10.1208/s12248-014-9673-9>
<PubMed>
49. 2010) Platelet-derived growth factor mediates survival of leukemic large granular lymphocytes via an autocrine regulatory pathway. Blood 115, 51–60.
< , J., Liu, X., Nyland, S. B., Zhang, R., Ryland, L. K., Broeg, K., Baab, K. T., Jarbadan, N. R., Irby, R., Loughran, T. P. Jr. (https://doi.org/10.1182/blood-2009-06-223719>
<PubMed>