Prague Med. Rep. 2022, 123, 129-139

https://doi.org/10.14712/23362936.2022.13

Factors Affecting Drug Exposure after Inhalation

Anežka Nováková, Martin Šíma, Ondřej Slanař

Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic

Received May 23, 2022
Accepted August 2, 2022

References

1. Apiou-Sbirlea, G., Katz, I. M., Martonen, T. B. (2010) The effect of simulated airway diseases and affected flow distributions on aerosol deposition. Respir. Care 55, 707–718.
2. Aurora, S. K., Silberstein, S. D., Kori, S. H., Tepper, S. J., Borland, S. W., Wang, M., Dodick, D. W. (2011) MAP0004, orally inhaled DHE: A randomized, controlled study in the acute treatment of migraine. Headache 51, 507–517. <https://doi.org/10.1111/j.1526-4610.2011.01869.x>
3. Bacle, A., Bouzillé, G., Bruyère, A., Cuggia, M., Fardel, O., Le Corre, P. (2021) Drivers of absolute systemic bioavailability after oral pulmonary inhalation in humans. Eur. J. Pharm. Biopharm. 164, 36–53. <https://doi.org/10.1016/j.ejpb.2021.04.014>
4. Borghardt, J. M., Weber, B., Staab, A., Kloft, C. (2015) Pharmacometric models for characterizing the pharmacokinetics of orally inhaled drugs. AAPS J. 17, 853–870. <https://doi.org/10.1208/s12248-015-9760-6>
5. Borghardt, J. M., Weber, B., Staab, A., Kunz, C., Kloft, C. (2016) Model-based evaluation of pulmonary pharmacokinetics in asthmatic and COPD patients after oral olodaterol inhalation. Br. J. Clin. Pharmacol. 82, 739–753. <https://doi.org/10.1111/bcp.12999>
6. Borghardt, J. M., Kloft, C., Sharma, A. (2018) Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes. Can. Respir. J. 2018, e2732017.
7. Braakhuis, H. M., Park, M. V., Gosens, I., De Jong, W. H., Cassee, F. R. (2014) Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part. Fibre Toxicol. 11, 18. <https://doi.org/10.1186/1743-8977-11-18>
8. Brown, R. A., Schanker, L. S. (1983) Absorption of aerosolized drugs from the rat lung. Drug Metab. Dispos. 11, 355–360.
9. Cazzola, M., Ora, J., Di Paolo, A., Puxeddu, E., Calzetta, L., Rogliani, P. (2016) Onset of action of budesonide/formoterol Spiromax® compared with budesonide/formoterol Turbuhaler® in patients with COPD. Pulm. Pharmacol. Ther. 39, 48–53. <https://doi.org/10.1016/j.pupt.2016.06.006>
10. Chillistone, S., Hardman, J. G. (2017) Factors affecting drug absorption and distribution. Anaesthesia and Intensive Care Medicine 18, 335–339. <https://doi.org/10.1016/j.mpaic.2017.04.007>
11. Chow, A. H. L., Tong, H. H. Y., Chattopadhyay, P., Shekunov, B. Y. (2007) Particle engineering for pulmonary drug delivery. Pharm. Res. 24, 411–437. <https://doi.org/10.1007/s11095-006-9174-3>
12. Choy, Y. B., Prausnitz, M. R. (2011) The Rule of Five for non-oral routes of drug delivery: Ophthalmic, inhalation and transdermal. Pharm. Res. 28, 943–948. <https://doi.org/10.1007/s11095-010-0292-6>
13. Darquenne, C. (2012) Aerosol deposition in health and disease. J. Aerosol Med. Pulm. Drug Deliv. 25, 140–147. <https://doi.org/10.1089/jamp.2011.0916>
14. Deng, Q., Ou, C., Chen, J., Xiang, Y. (2018) Particle deposition in tracheobronchial airways of an infant, child and adult. Sci. Total Environ. 612, 339–346. <https://doi.org/10.1016/j.scitotenv.2017.08.240>
15. Dixon, B., Smith, R. J., Campbell, D. J., Moran, J. L., Doig, G. S., Rechnitzer, T., MacIsaac, C. M., Simpson, N., van Haren, F. M. P., Ghosh, A. N., Gupta, S., Broadfield, E. J. C., Crozier, T. M. E., French, C., Santamaria, J. D. (2021) Nebulised heparin for patients with or at risk of acute respiratory distress syndrome: A multicentre, randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir. Med. 9, 360–372. <https://doi.org/10.1016/S2213-2600(20)30470-7>
16. Dugas, H. L., Peters, J. I., Williams, R. O. (2013) Nebulization of mycophenolate mofetil inhalation suspension in rats: Comparison with oral and pulmonary administration of Cellcept®. Int. J. Pharm. 441, 19–29. <https://doi.org/10.1016/j.ijpharm.2012.12.016>
17. Edsbäcker, S., Wollmer, P., Selroos, O., Borgström, L., Olsson, B., Ingelf, J. (2008) Do airway clearance mechanisms influence the local and systemic effects of inhaled corticosteroids? Pulm. Pharmacol. Ther. 21, 247–258. <https://doi.org/10.1016/j.pupt.2007.08.005>
18. Edwards, D. A., Hanes, J., Caponetti, G., Hrkach, J., Ben-Jebria, A., Eskew, M. L., Mintzes, J., Deaver, D., Lotan, N., Langer, R. (1997) Large porous particles for pulmonary drug delivery. Science 276, 1868–1872. <https://doi.org/10.1126/science.276.5320.1868>
19. Eedara, B. B., Alabsi, W., Encinas-Basurto, D., Polt, R., Ledford, J. G., Mansour, H. M. (2021) Inhalation delivery for the treatment and prevention of COVID-19 infection. Pharmaceutics 13, 1077. <https://doi.org/10.3390/pharmaceutics13071077>
20. Endter, S., Becker, U., Daum, N., Huwer, H., Lehr, C.-M., Gumbleton, M., Ehrhardt, C. (2007) P-glycoprotein (MDR1) functional activity in human alveolar epithelial cell monolayers. Cell Tissue Res. 328, 77–84. <https://doi.org/10.1007/s00441-006-0346-6>
21. Ferron, G. A., Oberdörster, G., Henneberg, R. (1989) Estimation of the deposition of aerosolized drugs in the human respiratory tract due to hygroscopic growth. J. Aerosol Med. 2, 271–284. <https://doi.org/10.1089/jam.1989.2.271>
22. French, J., Friedman, D., Wechsler, R., DiVentura, B., Gelfand, M., Pollard, J., Huie, K., Vazquez, B., Gong, L., Cassella, J., Kamemoto, E. (2017) Inhaled alprazolam, a potential rescue medication, works rapidly in patients with photosensitive epilepsy (P6.236). Neurology 88, (16 Supplement).
23. Guengerich, F. P. (2020) Cytochrome P450 2E1 and its roles in disease. Chem. Biol. Interact. 322, 109056. <https://doi.org/10.1016/j.cbi.2020.109056>
24. Hassan, M., Lau, R. (2010) Effect of particle formulation on dry powder inhalation efficiency. Curr. Pharm. Des. 16, 2377–2387. <https://doi.org/10.2174/138161210791920423>
25. Heyder, J. (2004) Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc. Am. Thorac. Soc. 1, 315–320. <https://doi.org/10.1513/pats.200409-046TA>
26. Hou, S., Wu, J., Li, X., Shu, H. (2015) Practical, regulatory and clinical considerations for development of inhalation drug products. Asian J. Pharm. Sci. 10, 490–500. <https://doi.org/10.1016/j.ajps.2015.08.008>
27. Houtmeyers, E., Gosselink, G., Gayan-Ramirez, G., Decramer, M. (1999) Regulation of mucociliary clearance in health and disease. Eur. Respir. J. 13, 1177–1188. <https://doi.org/10.1034/j.1399-3003.1999.13e39.x>
28. Kim, J. H., Sherman, M. E., Curriero, F. C., Guengerich, F. P., Strickland, P. T., Sutter, T. R. (2004) Expression of cytochromes P450 1A1 and 1B1 in human lung from smokers, non-smokers, and ex-smokers. Toxicol. Appl. Pharmacol. 199, 210–219. <https://doi.org/10.1016/j.taap.2003.11.015>
29. Laube, B. L., Janssens, H. M., de Jongh, F. H. C., Devadason, S. G., Dhand, R., Diot, P., Everard, M. L., Horvath, I., Navalesi, P., Voshaar, T., Chrystyn, H. (2011) What the pulmonary specialist should know about the new inhalation therapies. Eur. Respir. J. 37, 1308–1417. <https://doi.org/10.1183/09031936.00166410>
30. Leal, J., Smyth, H. D. C., Ghosh, D. (2017) Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm. 532, 555–572. <https://doi.org/10.1016/j.ijpharm.2017.09.018>
31. Liu, Q., Guan, J., Qin, L., Zhang, X., Mao, S. (2020) Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov. Today 25, 150–159. <https://doi.org/10.1016/j.drudis.2019.09.023>
32. Macleod, D. B., Habib, A. S., Ikeda, K., Spyker, D. A., Cassella, J. V., Ho, K. Y., Gan, T. J. (2012) Inhaled fentanyl aerosol in healthy volunteers: Pharmacokinetics and pharmacodynamics. Anesth. Analg. 115, 1071–1077. <https://doi.org/10.1213/ANE.0b013e3182691898>
33. Manford, F., Riffo-Vasquez, Y., Spina, D., Page, C. P., Hutt, A. J., Moore, V., Johansson, F., Forbes, B. (2008) Lack of difference in pulmonary absorption of digoxin, a P-glycoprotein substrate, in mdr1a-deficient and mdr1a-competent mice. J. Pharm. Pharmacol. 60, 1305–1310. <https://doi.org/10.1211/jpp/60.10.0006>
34. Mercadante, S., Voza, A., Serra, S., Ruggiano, G., Carpinteri, G., Gangitano, G., Intelligente, F., Bonafede, E., Sblendido, A., Farina, A., Soldi, A., Fabbri, A.; MEDITA Study Group (2019) Analgesic efficacy, practicality and safety of inhaled methoxyflurane versus standard analgesic treatment for acute trauma pain in the emergency setting: A randomised, open-label, active-controlled, multicentre trial in Italy (MEDITA). Adv. Ther. 36, 3030–3046. <https://doi.org/10.1007/s12325-019-01055-9>
35. Merritt, B. A., Okyere, C. P., Jasinski, D. M. (2002) Isopropyl alcohol inhalation: Alternative treatment of postoperative nausea and vomiting. Nurs. Res. 51, 125–128. <https://doi.org/10.1097/00006199-200203000-00009>
36. Mobley, C., Hochhaus, G. (2001) Methods used to assess pulmonary deposition and absorption of drugs. Drug Discov. Today 6, 367–375. <https://doi.org/10.1016/S1359-6446(01)01691-9>
37. Munkholm, M., Mortensen, J. (2014) Mucociliary clearance: Pathophysiological aspects. Clin. Physiol. Funct. Imaging 34, 171–177. <https://doi.org/10.1111/cpf.12085>
38. Pasqua, E., Hamblin, N., Edwards, C., Baker-Glenn, C., Hurley, C. (2022) Developing inhaled drugs for respiratory diseases: A medicinal chemistry perspective. Drug Discov. Today 27, 134–150. <https://doi.org/10.1016/j.drudis.2021.09.005>
39. Patel, B., Gupta, N., Ahsan, F. (2015) Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur. J. Pharm. Biopharm. 89, 163–174. <https://doi.org/10.1016/j.ejpb.2014.12.001>
40. Patton, J., Byron, P. (2007) Inhaling medicines: Delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 6, 67–74. <https://doi.org/10.1038/nrd2153>
41. Patton, J. S., Fishburn, C. S., Weers, J. G. (2004) The lungs as a portal of entry for systemic drug delivery. Proc. Am. Thorac. Soc. 1, 338–344. <https://doi.org/10.1513/pats.200409-049TA>
42. Patton, J. S., Brain, J. D., Davies, L. A., Fiegel, J., Gumbleton, M., Kim, K.-J., Sakagami, M., Vanbever, R., Ehrhardt, C. (2010) The particle has landed – Characterizing the fate of inhaled pharmaceuticals. J. Aerosol Med. Pulm. Drug Deliv. 23, S71–S87 (Suppl. 2). <https://doi.org/10.1089/jamp.2010.0836>
43. Pilcer, G., Amighi, K. (2010) Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 392, 1–19. <https://doi.org/10.1016/j.ijpharm.2010.03.017>
44. Prime, D., Atkins, P. J., Slater, A., Sumby, B. (1997) Review of dry powder inhalers. Adv. Drug Deliv. Rev. 26, 51–58. <https://doi.org/10.1016/S0169-409X(97)00510-3>
45. Rau, J. L. (2005) The inhalation of drugs: Advantages and problems. Respir. Care 50, 367–382.
46. Ritchie, T. J., Luscombe, C. N., Macdonald, S. J. F. (2009) Analysis of the calculated physicochemical properties of respiratory drugs: Can we design for inhaled drugs yet? J. Chem. Inf. Model. 49, 1025–1032. <https://doi.org/10.1021/ci800429e>
47. Rojanarat, W., Nakpheng, T., Thawithong, E., Yanyium, N., Srichana, T. (2012) Inhaled pyrazinamide proliposome for targeting alveolar macrophages. Drug Deliv. 19, 334–345. <https://doi.org/10.3109/10717544.2012.721144>
48. Shute, J. K., Calzetta, L., Cardaci, V., di Toro, S., Page, C. P., Cazzola, M. (2018) Inhaled nebulised unfractionated heparin improves lung function in moderate to very severe COPD: A pilot study. Pulm. Pharmacol. Ther. 48, 88–96. <https://doi.org/10.1016/j.pupt.2017.10.001>
49. Siekmeier, R., Scheuch, G. (2009) Systemic treatment by inhalation of macromolecules – Principles, problems, and examples. J. Physiol. Pharmacol. 59, 53–79 (Suppl. 6).
50. Sigurdsson, H. H., Kirch, J., Lehr, C.-M. (2013) Mucus as a barrier to lipophilic drugs. Int. J. Pharm. 453, 56–64. <https://doi.org/10.1016/j.ijpharm.2013.05.040>
51. Strong, P., Ito, K., Murray, J., Rapeport, G. (2018) Current approaches to the discovery of novel inhaled medicines. Drug Discov. Today 23, 1705–1717. <https://doi.org/10.1016/j.drudis.2018.05.017>
52. Tamai, I. (2013) Pharmacological and pathophysiological roles of carnitine/organic cation transporters (OCTNs: SLC22A4, SLC22A5 and Slc22a21). Biopharm. Drug Dispos. 34, 29–44. <https://doi.org/10.1002/bdd.1816>
53. Taylor, G. (1990) The absorption and metabolism of xenobiotics in the lung. Adv. Drug Deliv. Rev. 5, 37–61. <https://doi.org/10.1016/0169-409X(90)90006-E>
54. Tronde, A., Nordén, B., Jeppsson, A.-B., Brunmark, P., Nilsson, E., Lennernäs, H., Bengtsson, U. H. (2003a) Drug absorption from the isolated perfused rat lung – Correlations with drug physicochemical properties and epithelial permeability. J. Drug Target. 11, 61–74. <https://doi.org/10.1080/1061186031000086117>
55. Tronde, A., Nordén, B., Marchner, H., Wendel, A., Lennernäs, H., Bengtsson, U. H. (2003b) Pulmonary absorption rate and bioavailability of drugs in vivo in rats: Structure-absorption relationships and physicochemical profiling of inhaled drugs. J. Pharm. Sci. 92, 1216–1233. <https://doi.org/10.1002/jps.10386>
56. Uchenna Agu, R., Ikechukwu Ugwoke, M., Armand, M., Kinget, R., Verbeke, N. (2001) The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir. Res. 2, 198. <https://doi.org/10.1186/rr58>
57. Upton, R. N., Doolette, D. J. (1999) Kinetic aspects of drug disposition in the lungs. Clin. Exp. Pharmacol. Physiol. 26, 381–391. <https://doi.org/10.1046/j.1440-1681.1999.03048.x>
58. U.S. Food and Drug Administration (2005) Guidance for Industry: Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers.
59. Wang, Y.-B., Watts, A. B., Peters, J. I., Williams, R. O. (2014) The impact of pulmonary diseases on the fate of inhaled medicines – A review. Int. J. Pharm. 461, 112–128. <https://doi.org/10.1016/j.ijpharm.2013.11.042>
60. Wirkes, A., Jung, K., Ochs, M., Mühlfeld, C. (2010) Allometry of the mammalian intracellular pulmonary surfactant system. J. Appl. Physiol. 109, 1662–1669. <https://doi.org/10.1152/japplphysiol.00674.2010>
61. Yeh, H. C., Phalen, R. F., Raabe, O. G. (1976) Factors influencing the deposition of inhaled particles. Environ. Health Perspect. 15, 147–156. <https://doi.org/10.1289/ehp.7615147>
62. Zhang, J., Leifer, F., Rose, S., Chun, D. Y., Thaisz, J., Herr, T., Nashed, M., Joseph, J., Perkins, W. R., DiPetrillo, K. (2018) Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances amikacin uptake into macrophages. Front. Microbiol. 9, 915. <https://doi.org/10.3389/fmicb.2018.00915>
front cover

ISSN 1214-6994 (Print) ISSN 2336-2936 (Online)

Archive