Prague Med. Rep. 2022, 123, 129-139
https://doi.org/10.14712/23362936.2022.13
Factors Affecting Drug Exposure after Inhalation
References
1. 2010) The effect of simulated airway diseases and affected flow distributions on aerosol deposition. Respir. Care 55, 707–718.
, G., Katz, I. M., Martonen, T. B. (
2. 2011) MAP0004, orally inhaled DHE: A randomized, controlled study in the acute treatment of migraine. Headache 51, 507–517.
< , S. K., Silberstein, S. D., Kori, S. H., Tepper, S. J., Borland, S. W., Wang, M., Dodick, D. W. (https://doi.org/10.1111/j.1526-4610.2011.01869.x>
3. 2021) Drivers of absolute systemic bioavailability after oral pulmonary inhalation in humans. Eur. J. Pharm. Biopharm. 164, 36–53.
< , A., Bouzillé, G., Bruyère, A., Cuggia, M., Fardel, O., Le Corre, P. (https://doi.org/10.1016/j.ejpb.2021.04.014>
4. 2015) Pharmacometric models for characterizing the pharmacokinetics of orally inhaled drugs. AAPS J. 17, 853–870.
< , J. M., Weber, B., Staab, A., Kloft, C. (https://doi.org/10.1208/s12248-015-9760-6>
5. 2016) Model-based evaluation of pulmonary pharmacokinetics in asthmatic and COPD patients after oral olodaterol inhalation. Br. J. Clin. Pharmacol. 82, 739–753.
< , J. M., Weber, B., Staab, A., Kunz, C., Kloft, C. (https://doi.org/10.1111/bcp.12999>
6. 2018) Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes. Can. Respir. J. 2018, e2732017.
, J. M., Kloft, C., Sharma, A. (
7. 2014) Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part. Fibre Toxicol. 11, 18.
< , H. M., Park, M. V., Gosens, I., De Jong, W. H., Cassee, F. R. (https://doi.org/10.1186/1743-8977-11-18>
8. 1983) Absorption of aerosolized drugs from the rat lung. Drug Metab. Dispos. 11, 355–360.
, R. A., Schanker, L. S. (
9. 2016) Onset of action of budesonide/formoterol Spiromax® compared with budesonide/formoterol Turbuhaler® in patients with COPD. Pulm. Pharmacol. Ther. 39, 48–53.
< , M., Ora, J., Di Paolo, A., Puxeddu, E., Calzetta, L., Rogliani, P. (https://doi.org/10.1016/j.pupt.2016.06.006>
10. 2017) Factors affecting drug absorption and distribution. Anaesthesia and Intensive Care Medicine 18, 335–339.
< , S., Hardman, J. G. (https://doi.org/10.1016/j.mpaic.2017.04.007>
11. 2007) Particle engineering for pulmonary drug delivery. Pharm. Res. 24, 411–437.
< , A. H. L., Tong, H. H. Y., Chattopadhyay, P., Shekunov, B. Y. (https://doi.org/10.1007/s11095-006-9174-3>
12. 2011) The Rule of Five for non-oral routes of drug delivery: Ophthalmic, inhalation and transdermal. Pharm. Res. 28, 943–948.
< , Y. B., Prausnitz, M. R. (https://doi.org/10.1007/s11095-010-0292-6>
13. 2012) Aerosol deposition in health and disease. J. Aerosol Med. Pulm. Drug Deliv. 25, 140–147.
< , C. (https://doi.org/10.1089/jamp.2011.0916>
14. 2018) Particle deposition in tracheobronchial airways of an infant, child and adult. Sci. Total Environ. 612, 339–346.
< , Q., Ou, C., Chen, J., Xiang, Y. (https://doi.org/10.1016/j.scitotenv.2017.08.240>
15. 2021) Nebulised heparin for patients with or at risk of acute respiratory distress syndrome: A multicentre, randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir. Med. 9, 360–372.
< , B., Smith, R. J., Campbell, D. J., Moran, J. L., Doig, G. S., Rechnitzer, T., MacIsaac, C. M., Simpson, N., van Haren, F. M. P., Ghosh, A. N., Gupta, S., Broadfield, E. J. C., Crozier, T. M. E., French, C., Santamaria, J. D. (https://doi.org/10.1016/S2213-2600(20)30470-7>
16. 2013) Nebulization of mycophenolate mofetil inhalation suspension in rats: Comparison with oral and pulmonary administration of Cellcept®. Int. J. Pharm. 441, 19–29.
< , H. L., Peters, J. I., Williams, R. O. (https://doi.org/10.1016/j.ijpharm.2012.12.016>
17. 2008) Do airway clearance mechanisms influence the local and systemic effects of inhaled corticosteroids? Pulm. Pharmacol. Ther. 21, 247–258.
< , S., Wollmer, P., Selroos, O., Borgström, L., Olsson, B., Ingelf, J. (https://doi.org/10.1016/j.pupt.2007.08.005>
18. 1997) Large porous particles for pulmonary drug delivery. Science 276, 1868–1872.
< , D. A., Hanes, J., Caponetti, G., Hrkach, J., Ben-Jebria, A., Eskew, M. L., Mintzes, J., Deaver, D., Lotan, N., Langer, R. (https://doi.org/10.1126/science.276.5320.1868>
19. 2021) Inhalation delivery for the treatment and prevention of COVID-19 infection. Pharmaceutics 13, 1077.
< , B. B., Alabsi, W., Encinas-Basurto, D., Polt, R., Ledford, J. G., Mansour, H. M. (https://doi.org/10.3390/pharmaceutics13071077>
20. 2007) P-glycoprotein (MDR1) functional activity in human alveolar epithelial cell monolayers. Cell Tissue Res. 328, 77–84.
< , S., Becker, U., Daum, N., Huwer, H., Lehr, C.-M., Gumbleton, M., Ehrhardt, C. (https://doi.org/10.1007/s00441-006-0346-6>
21. 1989) Estimation of the deposition of aerosolized drugs in the human respiratory tract due to hygroscopic growth. J. Aerosol Med. 2, 271–284.
< , G. A., Oberdörster, G., Henneberg, R. (https://doi.org/10.1089/jam.1989.2.271>
22. French, J., Friedman, D., Wechsler, R., DiVentura, B., Gelfand, M., Pollard, J., Huie, K., Vazquez, B., Gong, L., Cassella, J., Kamemoto, E. (2017) Inhaled alprazolam, a potential rescue medication, works rapidly in patients with photosensitive epilepsy (P6.236). Neurology 88, (16 Supplement).
23. 2020) Cytochrome P450 2E1 and its roles in disease. Chem. Biol. Interact. 322, 109056.
< , F. P. (https://doi.org/10.1016/j.cbi.2020.109056>
24. 2010) Effect of particle formulation on dry powder inhalation efficiency. Curr. Pharm. Des. 16, 2377–2387.
< , M., Lau, R. (https://doi.org/10.2174/138161210791920423>
25. 2004) Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc. Am. Thorac. Soc. 1, 315–320.
< , J. (https://doi.org/10.1513/pats.200409-046TA>
26. 2015) Practical, regulatory and clinical considerations for development of inhalation drug products. Asian J. Pharm. Sci. 10, 490–500.
< , S., Wu, J., Li, X., Shu, H. (https://doi.org/10.1016/j.ajps.2015.08.008>
27. 1999) Regulation of mucociliary clearance in health and disease. Eur. Respir. J. 13, 1177–1188.
< , E., Gosselink, G., Gayan-Ramirez, G., Decramer, M. (https://doi.org/10.1034/j.1399-3003.1999.13e39.x>
28. 2004) Expression of cytochromes P450 1A1 and 1B1 in human lung from smokers, non-smokers, and ex-smokers. Toxicol. Appl. Pharmacol. 199, 210–219.
< , J. H., Sherman, M. E., Curriero, F. C., Guengerich, F. P., Strickland, P. T., Sutter, T. R. (https://doi.org/10.1016/j.taap.2003.11.015>
29. 2011) What the pulmonary specialist should know about the new inhalation therapies. Eur. Respir. J. 37, 1308–1417.
< , B. L., Janssens, H. M., de Jongh, F. H. C., Devadason, S. G., Dhand, R., Diot, P., Everard, M. L., Horvath, I., Navalesi, P., Voshaar, T., Chrystyn, H. (https://doi.org/10.1183/09031936.00166410>
30. 2017) Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm. 532, 555–572.
< , J., Smyth, H. D. C., Ghosh, D. (https://doi.org/10.1016/j.ijpharm.2017.09.018>
31. 2020) Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov. Today 25, 150–159.
< , Q., Guan, J., Qin, L., Zhang, X., Mao, S. (https://doi.org/10.1016/j.drudis.2019.09.023>
32. 2012) Inhaled fentanyl aerosol in healthy volunteers: Pharmacokinetics and pharmacodynamics. Anesth. Analg. 115, 1071–1077.
< , D. B., Habib, A. S., Ikeda, K., Spyker, D. A., Cassella, J. V., Ho, K. Y., Gan, T. J. (https://doi.org/10.1213/ANE.0b013e3182691898>
33. 2008) Lack of difference in pulmonary absorption of digoxin, a P-glycoprotein substrate, in mdr1a-deficient and mdr1a-competent mice. J. Pharm. Pharmacol. 60, 1305–1310.
< , F., Riffo-Vasquez, Y., Spina, D., Page, C. P., Hutt, A. J., Moore, V., Johansson, F., Forbes, B. (https://doi.org/10.1211/jpp/60.10.0006>
34. 2019) Analgesic efficacy, practicality and safety of inhaled methoxyflurane versus standard analgesic treatment for acute trauma pain in the emergency setting: A randomised, open-label, active-controlled, multicentre trial in Italy (MEDITA). Adv. Ther. 36, 3030–3046.
< , S., Voza, A., Serra, S., Ruggiano, G., Carpinteri, G., Gangitano, G., Intelligente, F., Bonafede, E., Sblendido, A., Farina, A., Soldi, A., Fabbri, A.; MEDITA Study Group (https://doi.org/10.1007/s12325-019-01055-9>
35. 2002) Isopropyl alcohol inhalation: Alternative treatment of postoperative nausea and vomiting. Nurs. Res. 51, 125–128.
< , B. A., Okyere, C. P., Jasinski, D. M. (https://doi.org/10.1097/00006199-200203000-00009>
36. 2001) Methods used to assess pulmonary deposition and absorption of drugs. Drug Discov. Today 6, 367–375.
< , C., Hochhaus, G. (https://doi.org/10.1016/S1359-6446(01)01691-9>
37. 2014) Mucociliary clearance: Pathophysiological aspects. Clin. Physiol. Funct. Imaging 34, 171–177.
< , M., Mortensen, J. (https://doi.org/10.1111/cpf.12085>
38. 2022) Developing inhaled drugs for respiratory diseases: A medicinal chemistry perspective. Drug Discov. Today 27, 134–150.
< , E., Hamblin, N., Edwards, C., Baker-Glenn, C., Hurley, C. (https://doi.org/10.1016/j.drudis.2021.09.005>
39. 2015) Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur. J. Pharm. Biopharm. 89, 163–174.
< , B., Gupta, N., Ahsan, F. (https://doi.org/10.1016/j.ejpb.2014.12.001>
40. 2007) Inhaling medicines: Delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 6, 67–74.
< , J., Byron, P. (https://doi.org/10.1038/nrd2153>
41. 2004) The lungs as a portal of entry for systemic drug delivery. Proc. Am. Thorac. Soc. 1, 338–344.
< , J. S., Fishburn, C. S., Weers, J. G. (https://doi.org/10.1513/pats.200409-049TA>
42. 2010) The particle has landed – Characterizing the fate of inhaled pharmaceuticals. J. Aerosol Med. Pulm. Drug Deliv. 23, S71–S87 (Suppl. 2).
< , J. S., Brain, J. D., Davies, L. A., Fiegel, J., Gumbleton, M., Kim, K.-J., Sakagami, M., Vanbever, R., Ehrhardt, C. (https://doi.org/10.1089/jamp.2010.0836>
43. 2010) Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 392, 1–19.
< , G., Amighi, K. (https://doi.org/10.1016/j.ijpharm.2010.03.017>
44. 1997) Review of dry powder inhalers. Adv. Drug Deliv. Rev. 26, 51–58.
< , D., Atkins, P. J., Slater, A., Sumby, B. (https://doi.org/10.1016/S0169-409X(97)00510-3>
45. 2005) The inhalation of drugs: Advantages and problems. Respir. Care 50, 367–382.
, J. L. (
46. 2009) Analysis of the calculated physicochemical properties of respiratory drugs: Can we design for inhaled drugs yet? J. Chem. Inf. Model. 49, 1025–1032.
< , T. J., Luscombe, C. N., Macdonald, S. J. F. (https://doi.org/10.1021/ci800429e>
47. 2012) Inhaled pyrazinamide proliposome for targeting alveolar macrophages. Drug Deliv. 19, 334–345.
< , W., Nakpheng, T., Thawithong, E., Yanyium, N., Srichana, T. (https://doi.org/10.3109/10717544.2012.721144>
48. 2018) Inhaled nebulised unfractionated heparin improves lung function in moderate to very severe COPD: A pilot study. Pulm. Pharmacol. Ther. 48, 88–96.
< , J. K., Calzetta, L., Cardaci, V., di Toro, S., Page, C. P., Cazzola, M. (https://doi.org/10.1016/j.pupt.2017.10.001>
49. 2009) Systemic treatment by inhalation of macromolecules – Principles, problems, and examples. J. Physiol. Pharmacol. 59, 53–79 (Suppl. 6).
, R., Scheuch, G. (
50. 2013) Mucus as a barrier to lipophilic drugs. Int. J. Pharm. 453, 56–64.
< , H. H., Kirch, J., Lehr, C.-M. (https://doi.org/10.1016/j.ijpharm.2013.05.040>
51. 2018) Current approaches to the discovery of novel inhaled medicines. Drug Discov. Today 23, 1705–1717.
< , P., Ito, K., Murray, J., Rapeport, G. (https://doi.org/10.1016/j.drudis.2018.05.017>
52. 2013) Pharmacological and pathophysiological roles of carnitine/organic cation transporters (OCTNs: SLC22A4, SLC22A5 and Slc22a21). Biopharm. Drug Dispos. 34, 29–44.
< , I. (https://doi.org/10.1002/bdd.1816>
53. 1990) The absorption and metabolism of xenobiotics in the lung. Adv. Drug Deliv. Rev. 5, 37–61.
< , G. (https://doi.org/10.1016/0169-409X(90)90006-E>
54. 2003a) Drug absorption from the isolated perfused rat lung – Correlations with drug physicochemical properties and epithelial permeability. J. Drug Target. 11, 61–74.
< , A., Nordén, B., Jeppsson, A.-B., Brunmark, P., Nilsson, E., Lennernäs, H., Bengtsson, U. H. (https://doi.org/10.1080/1061186031000086117>
55. 2003b) Pulmonary absorption rate and bioavailability of drugs in vivo in rats: Structure-absorption relationships and physicochemical profiling of inhaled drugs. J. Pharm. Sci. 92, 1216–1233.
< , A., Nordén, B., Marchner, H., Wendel, A., Lennernäs, H., Bengtsson, U. H. (https://doi.org/10.1002/jps.10386>
56. 2001) The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir. Res. 2, 198.
< Agu, R., Ikechukwu Ugwoke, M., Armand, M., Kinget, R., Verbeke, N. (https://doi.org/10.1186/rr58>
57. 1999) Kinetic aspects of drug disposition in the lungs. Clin. Exp. Pharmacol. Physiol. 26, 381–391.
< , R. N., Doolette, D. J. (https://doi.org/10.1046/j.1440-1681.1999.03048.x>
58. U.S. Food and Drug Administration (2005) Guidance for Industry: Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers.
59. 2014) The impact of pulmonary diseases on the fate of inhaled medicines – A review. Int. J. Pharm. 461, 112–128.
< , Y.-B., Watts, A. B., Peters, J. I., Williams, R. O. (https://doi.org/10.1016/j.ijpharm.2013.11.042>
60. 2010) Allometry of the mammalian intracellular pulmonary surfactant system. J. Appl. Physiol. 109, 1662–1669.
< , A., Jung, K., Ochs, M., Mühlfeld, C. (https://doi.org/10.1152/japplphysiol.00674.2010>
61. 1976) Factors influencing the deposition of inhaled particles. Environ. Health Perspect. 15, 147–156.
< , H. C., Phalen, R. F., Raabe, O. G. (https://doi.org/10.1289/ehp.7615147>
62. 2018) Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances amikacin uptake into macrophages. Front. Microbiol. 9, 915.
< , J., Leifer, F., Rose, S., Chun, D. Y., Thaisz, J., Herr, T., Nashed, M., Joseph, J., Perkins, W. R., DiPetrillo, K. (https://doi.org/10.3389/fmicb.2018.00915>