Prague Med. Rep. 2022, 123, 215-224

https://doi.org/10.14712/23362936.2022.20

ADHD – What Is the Meaning of Sex-dependent Incidence Differences?

Jindřich Mourek, Jaroslav Pokorný

Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic

Received June 23, 2022
Accepted October 18, 2022

References

1. Bjorklund, A. N., Stenevi, U. (1979) Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system. Physiol. Rev. 59(1), 62–100. <https://doi.org/10.1152/physrev.1979.59.1.62>
2. Bouček, J., Pidrman, V. (2005) Psychofarmaka v Medicíně. Grada, Praha.
3. Du Rietz, E., Coleman, J., Glanville, K., Choi, S. W., O’Reilly, P. F., Kuntsi, J. (2018) Association of polygenic risk for attention-deficit/hyperactivity disorder with co-occurring traits and disorders. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3(7), 635–643.
4. Gaub, M., Carlson, C. L. (1997) Gender differences in ADHD: A meta-analysis and critical review. J. Am. Acad. Child Adolesc. Psychiatry 36(8), 1036–1045. <https://doi.org/10.1097/00004583-199708000-00011>
5. Kaufman, S., Friedman, S. (1965) Dopamine-β-hydroxylase. Pharmacol. Rev. 17(2), 71–100.
6. Konrad, K., Eickhoff, S. B. (2010) Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder. Hum. Brain Mapp. 31(6), 904–916. <https://doi.org/10.1002/hbm.21058>
7. Koudelová, J., Mourek, J. (1990) Influence of sex and hypoxia on plasma dopamine-betahydroxylase activity in the rat. Physiol. Bohemoslov. 39, 409–416.
8. Koudelová, J., Mourek, J. (1991) Lipid peroxidation and changes of ascorbic acid level in hypoxic brain of 21-day-old rats. Wiss. Z. Humboldt Univ., R. Medizin 40, 47–51.
9. Kul, M., Unal, F., Kandemir, H., Sarkarati, B., Kilinc, K., Kandemir, S. B. (2015) Evaluation of oxidative metabolism in child and adolescent patients with attention deficit hyperactivity disorder. Psychiatry Investig. 12(3), 361. <https://doi.org/10.4306/pi.2015.12.3.361>
10. Lou, H. C., Rosa, P., Pryds, O., Karrebæk, H., Lunding, J., Cumming, P., Gjedde, A. (2004) ADHD: Increased dopamine receptor availability linked to attention deficit and low neonatal cerebral blood flow. Dev. Med. Child Neurol. 46(3), 179–183. <https://doi.org/10.1111/j.1469-8749.2004.tb00469.x>
11. Momany, A. M., Kamradt, J. M., Ullsperger, J. M., Elmore, A. L., Nigg, J. T., Nikolas, M. A., (2017) Sex moderates the impact of birth weight on child externalizing psychopathology. J. Abnorm. Psychol. 126(2), 244. <https://doi.org/10.1037/abn0000238>
12. Mourek, J. (1979) Effect of adrenaline on ATPase activities in different parts of developing brain. Physiol. Bohemoslov. 28, 573–576.
13. Mourek, J. (1985) VIiv in vitro izoprenalinu na aktivitu Na-K a Mg dependentní ATPasy v mozku různě starých krys. Sb. Lek. 87, 209–215.
14. Mourek, J. (1987) Beta receptory mozkové kůry a jejich význam pro aktivitu Na-K ATPázy u různě starých krys. Sb. Lek. 89, 335–339.
15. Mourek, J., Pokorný, J. (2021) Příspěvek k interpretačním možnostem syndromu ADHD. Ceska Slov. Psychiatr. 117(3), 138–143.
16. Mourek, J., Šmídová, L., Dohnalová, A. (2005) Lipoperoxidative activities in the cerebral cortex and medulla oblongata, related to age, sex, oxygen deficiency and short-term fasting. Prague Med. Rep. 106(3), 253–260.
17. Mowlem, F. D., Rosenqvist, M. A., Martin, J., Lichtenstein, P., Asherson, P., Larsson, H. (2019) Sex differences in predicting ADHD clinical diagnosis and pharmacological treatment. Eur. Child Adolesc. Psychiatry 28(4), 481–489. <https://doi.org/10.1007/s00787-018-1211-3>
18. Mravec, B., Kiss, A. (2004) The brain catecholamines. Brief anatomy and participation in the stress reaction and regulation of cardiovascular function. Cesk. Fysiol. 53, 102–116. (in Slovak)
19. Paclt, I., Drtílková, I., Kopečková, M., Theiner, P., Šerý, O., Čermáková, N. (2010) The association between TaqI A polymorphism of ANKK1 (DRD2) gene and ADHD in the Czech boys aged between 6 and 13 years. Neuro Endocrinol. Lett. 31(1), 131–136.
20. Pongou, R. (2015) Why is mortality higher in boys than in girls? A new hypothesis based on preconception environment and evidence from large sample of twins. Demography 50, 421–444. <https://doi.org/10.1007/s13524-012-0161-5>
21. Ramtekkar, U., Reiersen, A., Todorov, A., Todd, R. (2010) Sex and age differences in attention-deficit/hyperactivity disorder symptoms and diagnoses: Implications for DSM-V and ICD-11. J. Am. Acad. Child Adolesc. Psychiatry 49, 217–228.
22. Rubia, K. (2018) Cognitive neuroscience of attention deficit hyperactivity disorder (ADHD) and its clinical translation. Front. Hum. Neurosci. 12, 1–23. <https://doi.org/10.3389/fnhum.2018.00100>
23. Russell, V. A., Oades, R. D., Tannock, R., Killeen, P. R., Auerbach, J. G., Johansen, E. B., Sagvolden, T. (2006) Response variability in attention-deficit/hyperactivity disorder: A neuronal and glial energetics hypothesis. Behav. Brain Funct. 2(1), 1–25. <https://doi.org/10.1186/1744-9081-2-30>
24. Saez, M., Barceló, M. A., Farrerons, M., López-Casasnovas, G. (2018) The association between exposure to environmental factors and the occurrence of attention-deficit/hyperactivity disorder (ADHD). A population-based retrospective cohort study. Environ. Res. 166, 205–214. <https://doi.org/10.1016/j.envres.2018.05.009>
25. Šerý, O., Paclt, I., Drtílková, I., Theiner, P., Kopečková, M., Zvolský, P., Balcar, V. J. (2015) A 40-bp UZISVNTR polymorphism in the 3’-untranslated region of DAT1/SLC6A3 is associated with ADHD but not with alcoholism. Behav. Brain Funct. 11(1), 1–8.
26. Sezen, H., Kandemir, H., Savik, E., Basmacı Kandemir, S., Kilicaslan, F., Bilinc, H., Aksoy, N. (2016) Increased oxidative stress in children with attention deficit hyperactivity disorder. Redox Rep. 21(6), 248–253. <https://doi.org/10.1080/13510002.2015.1116729>
27. Shaw, J. C., Crombie, G. K., Zakar, T., Palliser, H. K., Hirst, J. J. (2020) Perinatal compromise contributes to programming of GABAergic and glutamatergic systems leading to long-term effects on offspring behaviour. J. Neuroendocrinol. 32(1), e12814. <https://doi.org/10.1111/jne.12814>
28. Smeets, W., Gonzales, A. (2000) Catecholamine system in brain of vertebrate: New perspectives through a comparative approach. Brain Res. 35, 308–379. <https://doi.org/10.1016/S0165-0173(00)00034-5>
29. Steen, E. E., Källén, K., Maršál, K., Norman, M., Hellström-Westas, L. (2014) Impact of sex on perinatal mortality and morbidity in twins. J. Perinat. Med. 42(2), 225–231. <https://doi.org/10.1515/jpm-2013-0147>
30. Swanson, J. M., Flodman, P., Kennedy, J., Spence, M. A., Moyzis, R., Schuck, S., Murias, M., Moriarity, J., Barr, C., Smith, M., Posner, M. (2000) Dopamine genes and ADHD. Neurosci. Biobehav. Rev. 24(1), 21–25. <https://doi.org/10.1016/S0149-7634(99)00062-7>
31. Tang, X., Seymour, K. E., Crocetti, D., Miller, M. I., Mostofsky, S. H., Rosch, K. S. (2019) Response control correlates of anomalous basal ganglia morphology in boys, but not girls, with attention-deficit/hyperactivity disorder. Behav. Brain Res. 23(367), 117–127. <https://doi.org/10.1016/j.bbr.2019.03.036>
32. Tarver, J., Daley, D., Sayal, K. (2014) Attention-deficit hyperactivity disorder (ADHD): An updated review of the essential facts. Child Care Health Dev. 40(6), 762–774. <https://doi.org/10.1111/cch.12139>
33. Verma, P., Singh, A., Nthenge-Ngumbau, D. N., Rajamma, U., Sinha, S., Mukhopadhyay, K., Mohanakumar, K. P. (2016) Attention deficit-hyperactivity disorder suffers from mitochondrial dysfunction. BBA Clin. 6, 153–158. <https://doi.org/10.1016/j.bbacli.2016.10.003>
34. Willcutt, E. G. (2012) The prevalence of DSM-IV attention-deficit/hyperactivity disorder: A meta-analytic review. Neurotherapeutics 9, 490–499. <https://doi.org/10.1007/s13311-012-0135-8>
35. Zdravotnická ročenka České republiky (2015) Vývoj novorozenecké, kojenecké a perinatální úmrtnosti. ÚZIS ČR, Praha.
front cover

ISSN 1214-6994 (Print) ISSN 2336-2936 (Online)

Archive