Prague Med. Rep. 2022, 123, 258-265
https://doi.org/10.14712/23362936.2022.24
Amyotrophic Lateral Sclerosis: An Analysis of the Electromyographic Fatigue of the Masticatory Muscles
References
1. 2020) Differential contributions of fatigue-induced strength loss and slowing of angular velocity to power loss following repeated maximal shortening contractions. Physiol. Rep. 8, e14362.
< , R., Hinks, A., Davidson, B., Power, G. A. (https://doi.org/10.14814/phy2.14362>
2. 2013) The neurophysiology of central and peripheral fatigue during sub-maximal lower limb isometric contractions. Front. Hum. Neurosci. 7, 135.
< , M., Menotti, F., Macaluso, A., Di Russo, F. (https://doi.org/10.3389/fnhum.2013.00135>
3. 2019) Diaphragmatic neurophysiology and respiratory markers in ALS. Front. Neurol. 10, 143.
< , M., Swash, M., Pinto, S. (https://doi.org/10.3389/fneur.2019.00143>
4. 2017) Effects of the functional orthopaedic therapy on masticatory muscles activity. J. Clin. Exp. Dent. 9, e886–e891.
, E., Tepedino, M., Chimenti, C., Tartaglia, G. M., Sforza, C. (
5. 2018) Motor unit number index and neurophysiological index as candidate biomarkers of presymptomatic motor neuron loss in amyotrophic lateral sclerosis. Muscle Nerve 58, 204–212.
< , M. L., Abrahao, A., Nunes, K. F., De Oliveira Braga, N. I., Oliveira, A. S. B., Zinman, L., Manzano, G. M. (https://doi.org/10.1002/mus.26087>
6. 2001) Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 81, 1725–1789.
< , S. C. (https://doi.org/10.1152/physrev.2001.81.4.1725>
7. 2018) Alterations in the stomatognathic system due to amyotrophic lateral sclerosis. J. Appl. Oral Sci. 26, e20170408.
< , L. M. N., Palinkas, M., Hallak, J. E. C., Marques Júnior, W., Vasconcelos, P. B., Frota, N. P. R., Regalo, I. H., Siéssere, S., Regalo, S. C. H. (https://doi.org/10.1590/1678-7757-2017-0408>
8. 2022) Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis. Lancet Neurol. 21, 480–493.
< , S. A., Hardiman, O., Al-Chalabi, A., Chió, A., Savelieff, M. G., Kiernan, M. C., Feldman, E. L. (https://doi.org/10.1016/S1474-4422(21)00465-8>
9. 2000) Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10, 361–374.
< , H. J., Freriks, B., Disselhorst-Klug, C., Rau, G. (https://doi.org/10.1016/S1050-6411(00)00027-4>
10. 2019) Multivariate analysis of factors related to the absence of musculoskeletal degenerative disease in middle-aged and older people. Geriatr. Gerontol. Int. 19, 1141–1146.
< , S., Ando, K., Kobayashi, K., Machino, M., Tanaka, S., Morozumi, M., Kanbara, S., Ito, S., Inoue, T., Seki, T., Ishizuka, S., Nakashima, H., Ishiguro, N., Hasegawa, Y. (https://doi.org/10.1111/ggi.13786>
11. 2021) Mechanisms of Frank-Starling law of the heart and stretch activation in striated muscles may have a common molecular origin. J. Muscle Res. Cell Motil. 42, 355–366.
< , M., Jin, J. P. (https://doi.org/10.1007/s10974-020-09595-2>
12. 2017) Releasing syntaphilin removes stressed mitochondria from axons independent of mitophagy under pathophysiological conditions. Neuron 94, 595.e6–610.e6.
< , M. Y., Cheng, X. T., Tammineni, P., Xie, Y., Zhou, B., Cai, Q., Sheng, Z. H. (https://doi.org/10.1016/j.neuron.2017.04.004>
13. 2017) Increased levels of intramuscular cytokines in patients with jaw muscle pain. J. Headache Pain 18, 30.
< , S., Christidis, N., Svensson, P., List, T., Ernberg, M. (https://doi.org/10.1186/s10194-017-0737-y>
14. 2020) Implication of 5-HT in the dysregulation of chloride homeostasis in prenatal spinal motoneurons from the G93A mouse model of amyotrophic lateral sclerosis. Int. J. Mol. Sci. 21, 1107.
< , E., Cazenave, W., Allain, A. E., Cattaert, D., Branchereau, P. (https://doi.org/10.3390/ijms21031107>
15. 2018) Dynamic neuromuscular remodeling precedes motor-unit loss in a mouse model of ALS. Elife 7, e41973.
< , É., Di Polo, A., Vande Velde, C., Robitaille, R. (https://doi.org/10.7554/eLife.41973>
16. 2019) Neuromuscular magnetic stimulation counteracts muscle decline in ALS patients: Results of a randomized, double-blind, controlled study. Sci. Rep. 9, 2837.
< , A., Dobrowolny, G., Cambieri, C., Onesti, E., Ceccanti, M., Frasca, V., Pisano, A., Cerbelli, B., Lepore, E., Ruffolo, G., Cifelli, P., Roseti, C., Giordano, C., Gori, M. C., Palma, E., Inghilleri, M. (https://doi.org/10.1038/s41598-019-39313-z>
17. 2016) Fatigue and depression in Iranian amyotrophic lateral sclerosis patients in Tehran in 2012. Electron. Physician 8, 2194–2198.
< , M., Raad, M. H., Arzoomanian, C. S., Ghasemzadeh, A. (https://doi.org/10.19082/2194>
18. 2005) Electromyographic fatigue threshold of the biceps brachii muscle during dynamic contraction. Electromyogr. Clin. Neurophysiol. 45, 167–175.
, A. S., Gonçalves, M., Cardozo, A. C., Barbosa, F. S. (
19. 2017) Influence of age on the electromyographic fatigue threshold of the masseter and temporal muscles of healthy subjects. Arch. Oral Biol. 84, 1–5.
< , L. F., Palinkas, M., Vasconcelos, P. B., Regalo, I. H., Cecilio, F. A., Oliveira, E. F., Semprini, M., Siéssere, S., Regalo, S. H. (https://doi.org/10.1016/j.archoralbio.2017.09.004>
20. 2021) Blood metal levels and amyotrophic lateral sclerosis risk: A prospective cohort. Ann. Neurol. 89, 125–133.
< , S., Broberg, K., Gallo, V., Levi, M., Kippler, M., Vineis, P., Veldink, J., van den Berg, L., Middleton, L., Travis, R. C., Bergmann, M. M., Palli, D., Grioni, S., Tumino, R., Elbaz, A., Vlaar, T., Mancini, F., Kühn, T., Katzke, V., Agudo, A., Goñi, F., Gómez, J. H., Rodríguez-Barranco, M., Merino, S., Barricarte, A., Trichopoulou, A., Jenab, M., Weiderpass, E., Vermeulen, R. (https://doi.org/10.1002/ana.25932>
21. 2020) Wheelchair propulsion fatigue thresholds in electromyographic and ventilatory testing. Spinal Cord 58, 1104–1111.
< , L., Zhang, L., Lin, X. B., Ferguson-Pell, M. (https://doi.org/10.1038/s41393-020-0470-2>
22. 2016) The epidemiology of amyotrophic lateral sclerosis. Handb. Clin. Neurol. 138, 225–238.
< , E. O., Malek, A. M., Lacomis, D. (https://doi.org/10.1016/B978-0-12-802973-2.00013-6>
23. 2003) Cerebral blood flow and oxygen metabolism in patients with progressive dementia and amyotrophic lateral sclerosis. Neurol. Res. 25, 351–356.
< , M., Ichiba, T., Kondo, S., Hirai, S., Okamoto, K. (https://doi.org/10.1179/016164103101201670>
24. 2017) Amyotrophic lateral sclerosis. Lancet 390, 2084–2098.
< , M. A., Hardiman, O., Chio, A., Al-Chalabi, A., Pasterkamp, R. J., Veldink, J. H., van den Berg, L. H. (https://doi.org/10.1016/S0140-6736(17)31287-4>
25. 2019) Evaluation of the electromyographic fatigue of the masseter and temporalis muscles in subjects with osteoporosis. Cranio 37, 254–263.
< Arnoni, V., Batista de Vasconcelos, P., Sousa, L. G., Ferreira, B., Palinkas, M., Acioli Righetti, M., Pádua da Silva, G., Aparecida Caldeira Monteiro, S., Regalo, S. C. H., Siéssere, S. (https://doi.org/10.1080/08869634.2017.1418618>
26. 2020) The clinical trial landscape in amyotrophic lateral sclerosis – Past, present, and future. Med. Res. Rev. 40, 1352–1384.
< , H. J., Mack, K. L., Brown, D. G., Brandon, N. J., Shorter, J. (https://doi.org/10.1002/med.21661>
27. 2015) Endolysosomal deficits augment mitochondria pathology in spinal motor neurons of asymptomatic fALS mice. Neuron 87, 355–370.
< , Y., Zhou, B., Lin, M. Y., Wang, S., Foust, K. D., Sheng, Z. H. (https://doi.org/10.1016/j.neuron.2015.06.026>
28. 2019) Prevalence, incidence, and clinical-epidemiological characterization of amyotrophic lateral sclerosis in Antioquia: Colombia. Neuroepidemiology 6, 1–7.
, C. H., Franco Dáger, E., Aguirre-Acevedo, D. C., de Carvalho, M., Solano-Atehortúa, J. (