Prague Med. Rep. 2024, 125, 5-14

https://doi.org/10.14712/23362936.2024.1

Genetic Variations of Angiotensinogen, Angiotensin Converting Enzyme, and Angiotensin Type 1 Receptor with the Risk of Pulmonary Tuberculosis

Hamidreza Kouhpayeh1, Mohammad Naderi1, Zahra Mohammadghasemipour1, Gholamreza Bahari2, Nastaran Elahian3, Mohsen Taheri3,4, Mohammad Hashemi3

1Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
2Children and Adolescent Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
3Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
4Department of Genetic, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran

Received September 4, 2023
Accepted January 30, 2024

References

1. Ay, C., Bencur, P., Vormittag, R., Sailer, T., Jungbauer, C., Vukovich, T., Mannhalter, C., Pabinger, I. (2007) The angiotensin-converting enzyme insertion/deletion polymorphism and serum levels of angiotensin-converting enzyme in venous thromboembolism. Data from a case control study. Thromb. Haemost. 98, 777–782. <https://doi.org/10.1160/TH07-03-0209>
2. Bahari, G., Hashemi, M., Taheri, M., Naderi, M., Moazeni-Roodi, A., Kouhpayeh, H. R., Eskandari-Nasab, E. (2013) Association of P2X7 gene polymorphisms with susceptibility to pulmonary tuberculosis in Zahedan, Southeast Iran. Genet. Mol. Res. 12, 160–166. <https://doi.org/10.4238/2013.January.24.8>
3. Brasier, A. R. (2010) The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc. Res. 86, 211–218. <https://doi.org/10.1093/cvr/cvq076>
4. Brice, E. A., Friedlander, W., Bateman, E. D., Kirsch, R. E. (1995) Serum angiotensin-converting enzyme activity, concentration, and specific activity in granulomatous interstitial lung disease, tuberculosis, and COPD. Chest 107, 706–710. <https://doi.org/10.1378/chest.107.3.706>
5. Cantero-Navarro, E., Fernandez-Fernandez, B., Ramos, A. M., Rayego-Mateos, S., Rodrigues-Diez, R. R., Sanchez-Nino, M. D., Sanz, A. B., Ruiz-Ortega, M., Ortiz, A. (2021) Renin-angiotensin system and inflammation update. Mol. Cell. Endocrinol. 529, 111254. <https://doi.org/10.1016/j.mce.2021.111254>
6. Esteban, V., Lorenzo, O., Ruperez, M., Suzuki, Y., Mezzano, S., Blanco, J., Kretzler, M., Sugaya, T., Egido, J., Ruiz-Ortega, M. (2004) Angiotensin II, via AT1 and AT2 receptors and NF-kappaB pathway, regulates the inflammatory response in unilateral ureteral obstruction. J. Am. Soc. Nephrol. 15, 1514–1529. <https://doi.org/10.1097/01.ASN.0000130564.75008.F5>
7. Gong, A. M., Li, X. Y., Wang, Y. Q., Yan, H. X., Xu, Z. X., Feng, Z., Xie, Y. Q., Yin, D. H., Yang, S. Z. (2012) Association study of ACE polymorphisms and systemic lupus erythematosus in Northern Chinese Han population. Mol. Biol. Rep. 39, 9485–9491. <https://doi.org/10.1007/s11033-012-1813-7>
8. Grange, J. M., Mitchell, D. N., Kemp, M., Kardjito, T. (1984) Serum angiotensin-converting enzyme and delayed hypersensitivity in pulmonary tuberculosis. Tubercle 65, 117–121. <https://doi.org/10.1016/0041-3879(84)90063-1>
9. Griendling, K. K., Ushio-Fukai, M. (2000) Reactive oxygen species as mediators of angiotensin II signaling. Regul. Pept. 91, 21–27. <https://doi.org/10.1016/S0167-0115(00)00136-1>
10. Hashemi, M., Sharifi-Mood, B., Rasouli, A., Amininia, S., Naderi, M., Taheri, M. (2015) Macrophage migration inhibitory factor –173 G/C polymorphism is associated with an increased risk of pulmonary tuberculosis in Zahedan, Southeast Iran. EXCLI J. 14, 117–122.
11. Hernandez-Presa, M., Bustos, C., Ortego, M., Tunon, J., Renedo, G., Ruiz-Ortega, M., Egido, J. (1997) Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-kappa B activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation 95, 1532–1541. <https://doi.org/10.1161/01.CIR.95.6.1532>
12. Kim, E. S., Kwon, B. S., Park, J. S., Chung, J. Y., Seo, S. H., Park, K. U., Song, J., Yoon, S., Lee, J. H. (2021) Relationship among genetic polymorphism of SLCO1B1, rifampicin exposure and clinical outcomes in patients with active pulmonary tuberculosis. Br. J. Clin. Pharmacol. 87, 3492–3500. <https://doi.org/10.1111/bcp.14758>
13. Kimura, S., Zhang, G. X., Nishiyama, A., Shokoji, T., Yao, L., Fan, Y. Y., Rahman, M., Suzuki, T., Maeta, H., Abe, Y. (2005) Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II. Hypertension 45, 860–866. <https://doi.org/10.1161/01.HYP.0000163462.98381.7f>
14. Kouhpayeh, H. R., Hashemi, M., Hashemi, S. A., Moazeni-Roodi, A., Naderi, M., Sharifi-Mood, B., Taheri, M., Mohammadi, M., Ghavami, S. (2012) R620W functional polymorphism of protein tyrosine phosphatase non-receptor type 22 is not associated with pulmonary tuberculosis in Zahedan, southeast Iran. Genet. Mol. Res. 11, 1075–1081. <https://doi.org/10.4238/2012.April.27.6>
15. Kranzhofer, R., Browatzki, M., Schmidt, J., Kubler, W. (1999) Angiotensin II activates the proinflammatory transcription factor nuclear factor-kappaB in human monocytes. Biochem. Biophys. Res. Commun. 257, 826–828. <https://doi.org/10.1006/bbrc.1999.0543>
16. Kwon, C. I., Park, P. W., Kang, H., Kim, G. I., Cha, S. T., Kim, K. S., Ko, K. H., Hong, S. P., Hwang, S. G., Rim, K. S. (2007) The usefulness of angiotensin converting enzyme in the differential diagnosis of Crohn’s disease and intestinal tuberculosis. Korean J. Intern. Med. 22, 1–7. <https://doi.org/10.3904/kjim.2007.22.1.1>
17. Li, H. M., Tang, F., Huang, Q., Pan, H. F., Zhang, T. P. (2022) Investigation on probable association between IL-13, IL-13RA1, and IL-13RA2 genes polymorphism and pulmonary tuberculosis. J. Inflamm. Res. 15, 4527–4536. <https://doi.org/10.2147/JIR.S374714>
18. Lopez-Sublet, M., Caratti di Lanzacco, L., Danser, A. H. J., Lambert, M., Elourimi, G., Persu, A. (2018) Focus on increased serum angiotensin-converting enzyme level: From granulomatous diseases to genetic mutations. Clin. Biochem. 59, 1–8. <https://doi.org/10.1016/j.clinbiochem.2018.06.010>
19. Mollnau, H., Wendt, M., Szocs, K., Lassegue, B., Schulz, E., Oelze, M., Li, H., Bodenschatz, M., August, M., Kleschyov, A. L., Tsilimingas, N., Walter, U., Forstermann, U., Meinertz, T., Griendling, K., Munzel, T. (2002) Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ. Res. 90, E58–E65. <https://doi.org/10.1161/01.RES.0000012569.55432.02>
20. Naderi, M., Hashemi, M., Taheri, M., Pesarakli, H., Eskandari-Nasab, E., Bahari, G. (2014) CD209 promoter –336 A/G (rs4804803) polymorphism is associated with susceptibility to pulmonary tuberculosis in Zahedan, southeast Iran. J. Microbiol. Immunol. Infect. 47, 171–175. <https://doi.org/10.1016/j.jmii.2013.03.013>
21. Naderi, M., Hashemi, M., Amininia, S., Rezaei, M., Taheri, M. (2015) Evaluation of 24 bp duplication of chitotriosidase gene in pulmonary tuberculosis in Zahedan, southeast Iran: A preliminary report. Arch. Clin. Infect. Dis. 10, e25178. <https://doi.org/10.5812/archcid.25178>
22. Naderi, M., Hashemi, M., Bahari, G. (2016a) Lack of association between rs4331426 polymorphism in the Chr18q11.2 locus and pulmonary tuberculosis in an Iranian population. Biomed. Environ. Sci. 29, 516–520.
23. Naderi, M., Hashemi, M., Safdari, A., Bahari, G., Taheri, M. (2016b) Association of genetic polymorphisms of CISH with the risk of pulmonary tuberculosis in Zahedan, Southeast Iran. Braz. J. Infect. Dis. 20, 379–383. <https://doi.org/10.1016/j.bjid.2016.05.003>
24. Nakamura, K., Yaguchi, T., Ohmura, G., Kobayashi, A., Kawamura, N., Iwata, T., Kiniwa, Y., Okuyama, R., Kawakami, Y. (2018) Involvement of local renin-angiotensin system in immunosuppression of tumor microenvironment. Cancer Sci. 109, 54–64. <https://doi.org/10.1111/cas.13423>
25. Ogarkov, O. B., Sin’kov, V. V., Medvedeva, T. V., Gutnikova, M., Nekipelov, O. M., Raevskaia, L., Kuptsevich, N., Kostiunin, K., Skvortsova, R. G. (2008) Polymorphism of genes of the renin-angiotensin system ACE, AT1R, and AT2R in patients with pulmonary tuberculosis. Mol. Gen. Mikrobiol. Virusol. 2008, 12–18. (in Russian)
26. Oosthuizen, D., Sturrock, E. D. (2022) Exploring the impact of ACE inhibition in immunity and disease. J. Renin Angiotensin Aldosterone Syst. 2022, 9028969. <https://doi.org/10.1155/2022/9028969>
27. Pueyo, M. E., Arnal, J. F., Rami, J., Michel, J. B. (1998) Angiotensin II stimulates the production of NO and peroxynitrite in endothelial cells. Am. J. Physiol. 274, C214–C220. <https://doi.org/10.1152/ajpcell.1998.274.1.C214>
28. Ristic, S., Starcevic Cizmarevic, N., Lavtar, P., Lovrecic, L., Perkovic, O., Sepcic, J., Sega Jazbec, S., Kapovic, M., Peterlin, B. (2017) Angiotensin-converting enzyme insertion/deletion gene polymorphism and interferon-beta treatment response in multiple sclerosis patients: A preliminary report. Pharmacogenet. Genomics 27, 232–235. <https://doi.org/10.1097/FPC.0000000000000283>
29. Seyedabadi, M., Goodchild, A. K., Pilowsky, P. M. (2001) Differential role of kinases in brain stem of hypertensive and normotensive rats. Hypertension 38, 1087–1092. <https://doi.org/10.1161/hy1101.096054>
30. Su, Y., Chen, S., Cai, S., Liu, S., Pan, N., Su, J., Qiao, K., Xu, M., Chen, B., Yang, S., Liu, Z. (2021) A novel angiotensin-I-converting enzyme (ACE) inhibitory peptide from Takifugu flavidus. Mar. Drugs 19, 651. <https://doi.org/10.3390/md19120651>
31. Taheri, M., Sarani, H., Moazeni-Roodi, A., Naderi, M., Hashemi, M. (2019) Association between P2X7 polymorphisms and susceptibility to tuberculosis: An updated meta-analysis of case-control studies. Medicina (Kaunas) 55, 298. <https://doi.org/10.3390/medicina55060298>
32. Taheri, M., Karimloo, R., Sarani, H., Molashahi, B., Naderi, M., Bahari, G., Hashemi, M. (2020) Association study of MBL2 gene polymorphisms and risk of tuberculosis in Southeast of Iran. Prague Med. Rep. 121, 236–243. <https://doi.org/10.14712/23362936.2020.20>
33. Touyz, R. M. (2003) Reactive oxygen species in vascular biology: Role in arterial hypertension. Expert Rev. Cardiovasc. Ther. 1, 91–106. <https://doi.org/10.1586/14779072.1.1.91>
34. World Health Organization (2021) Global Tuberculosis Report 2021. Available at: https://www.who.int/publications/i/item/9789240037021
35. Wu, J., Wu, S., Liu, Q., Wang, Y., Ji, G., Sandford, A. J., He, J. Q. (2020) Association of heme oxygenase-1 single nucleotide polymorphisms with susceptibility to tuberculosis in Chinese Han population. J. Clin. Lab. Anal. 20, e23276. <https://doi.org/10.1002/jcla.23276>
36. Yigit, S., Tural, S., Rustemoglu, A., Inanir, A., Gul, U., Kalkan, G., Akkanet, S., Karakus, N., Ates, O. (2013) DD genotype of ACE gene I/D polymorphism is associated with Behcet disease in a Turkish population. Mol. Biol. Rep. 40, 365–368. <https://doi.org/10.1007/s11033-012-2069-y>
37. Zhang, H., Liu, M., Fan, W., Sun, S., Fan, X. (2022) The impact of Mycobacterium tuberculosis complex in the environment on one health approach. Front. Public Health 10, 994745. <https://doi.org/10.3389/fpubh.2022.994745>
38. Zhang, Y., Li, X., Wu, Z., Fan, H. (2014) Association between ACE I/D polymorphism and pulmonary tuberculosis in Chinese population. Mol. Biol. Rep. 41, 3187–3189. <https://doi.org/10.1007/s11033-014-3178-6>
front cover

ISSN 1214-6994 (Print) ISSN 2336-2936 (Online)

Archive