Prague Med. Rep. 2024, 125, 187-194

https://doi.org/10.14712/23362936.2024.18

Pharmacokinetic-based Dosing Individualization of Mycophenolate Mofetil in Solid Organ Transplanted Patients

Sara Merdita, Pavel Ryšánek, Jan Miroslav Hartinger, Ondřej Slanař, Martin Šíma

Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic

Received April 15, 2024
Accepted July 28, 2024

References

1. Andrews, L. M., Riva, N., de Winter, B. C., Hesselink, D. A., de Wildt, S. N., Cransberg, K., van Gelder, T. (2015) Dosing algorithms for initiation of immunosuppressive drugs in solid organ transplant recipients. Expert Opin. Drug Metab. Toxicol. 11, 921–936. <https://doi.org/10.1517/17425255.2015.1033397>
2. Benjanuwattra, J., Pruksakorn, D., Koonrungsesomboon, N. (2020) Mycophenolic acid and its pharmacokinetic drug-drug interactions in humans: Review of the evidence and clinical implications. J. Clin. Pharmacol. 60, 295–311. <https://doi.org/10.1002/jcph.1565>
3. Bergan, S., Brunet, M., Hesselink, D. A., Johnson-Davis, K. L., Kunicki, P. K., Lemaitre, F., Marquet, P., Molinaro, M., Noceti, O., Pattanaik, S., Pawinski, T., Seger, C., Shipkova, M., Swen, J. J., van Gelder, T., Venkataramanan, R., Wieland, E., Woillard, J. B., Zwart, T. C., Barten, M. J., Budde, K., Dieterlen, M. T., Elens, L., Haufroid, V., Masuda, S., Millan, O., Mizuno, T., Moes, D., Oellerich, M., Picard, N., Salzmann, L., Tonshoff, B., van Schaik, R. H. N., Vethe, N. T., Vinks, A. A., Wallemacq, P., Asberg, A., Langman, L. J. (2021) Personalized therapy for mycophenolate: Consensus report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther. Drug Monit. 43, 150–200. <https://doi.org/10.1097/FTD.0000000000000871>
4. Bullingham, R., Shah, J., Goldblum, R., Schiff, M. (1996) Effects of food and antacid on the pharmacokinetics of single doses of mycophenolate mofetil in rheumatoid arthritis patients. Br. J. Clin. Pharmacol. 41, 513–516. <https://doi.org/10.1046/j.1365-2125.1996.03636.x>
5. Bullingham, R. E., Nicholls, A. J., Kamm, B. R. (1998) Clinical pharmacokinetics of mycophenolate mofetil. Clin. Pharmacokinet. 34, 429–455. <https://doi.org/10.2165/00003088-199834060-00002>
6. Cattaneo, D., Perico, N., Gaspari, F., Gotti, E., Remuzzi, G. (2002) Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation. Kidney Int. 62, 1060–1067. <https://doi.org/10.1046/j.1523-1755.2002.00531.x>
7. Ciftci, H. S., Demir, E., Karadeniz, M. S., Tefik, T., Nane, I., Oguz, F. S., Aydin, F., Turkmen, A. (2018) Influence of uridine diphosphate-glucuronosyltransferases (1A9) polymorphisms on mycophenolic acid pharmacokinetics in patients with renal transplant. Ren. Fail. 40, 395–402. <https://doi.org/10.1080/0886022X.2018.1489285>
8. de Winter, B. C., Mathot, R. A., Sombogaard, F., Vulto, A. G., van Gelder, T. (2011) Nonlinear relationship between mycophenolate mofetil dose and mycophenolic acid exposure: Implications for therapeutic drug monitoring. Clin. J. Am. Soc. Nephrol. 6, 656–663. <https://doi.org/10.2215/CJN.05440610>
9. Groll, A. H., Desai, A., Han, D., Howieson, C., Kato, K., Akhtar, S., Kowalski, D., Lademacher, C., Lewis, W., Pearlman, H., Mandarino, D., Yamazaki, T., Townsend, R. (2017) Pharmacokinetic assessment of drug-drug interactions of isavuconazole with the immunosuppressants cyclosporine, mycophenolic acid, prednisolone, sirolimus, and tacrolimus in healthy adults. Clin. Pharmacol. Drug Dev. 6, 76–85. <https://doi.org/10.1002/cpdd.284>
10. Hesselink, D. A., van Hest, R. M., Mathot, R. A., Bonthuis, F., Weimar, W., de Bruin, R. W., van Gelder, T. (2005) Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. Am. J. Transplant. 5, 987–994. <https://doi.org/10.1046/j.1600-6143.2005.00779.x>
11. Hronova, K., Sima, M., Svetlik, S., Matouskova, O., Slanar, O. (2014) Pharmacogenetics and immunosuppressive drugs. Expert Rev. Clin. Pharmacol. 7, 821–835. <https://doi.org/10.1586/17512433.2014.966811>
12. Jacobson, P., Green, K., Rogosheske, J., Brunstein, C., Ebeling, B., DeFor, T., McGlave, P., Weisdorf, D. (2007) Highly variable mycophenolate mofetil bioavailability following nonmyeloablative hematopoietic cell transplantation. J. Clin. Pharmacol. 47, 6–12. <https://doi.org/10.1177/0091270006295064>
13. Jain, A., Venkataramanan, R., Kwong, T., Mohanka, R., Orloff, M., Abt, P., Kashyap, R., Tsoulfas, G., Mack, C., Williamson, M., Batzold, P., Bozorgzadeh, A. (2007) Pharmacokinetics of mycophenolic acid in liver transplant patients after intravenous and oral administration of mycophenolate mofetil. Liver Transpl. 13, 791–796. <https://doi.org/10.1002/lt.21146>
14. Monchaud, C., Marquet, P. (2009) Pharmacokinetic optimization of immunosuppressive therapy in thoracic transplantation: Part II. Clin. Pharmacokinet. 48, 489–516. <https://doi.org/10.2165/11317240-000000000-00000>
15. Morii, M., Ueno, K., Ogawa, A., Kato, R., Yoshimura, H., Wada, K., Hashimoto, H., Takada, M., Tanaka, K., Nakatani, T., Shibakawa, M. (2000) Impairment of mycophenolate mofetil absorption by iron ion. Clin. Pharmacol. Ther. 68, 613–616. <https://doi.org/10.1067/mcp.2000.111480>
16. Naesens, M., Kuypers, D. R., Streit, F., Armstrong, V. W., Oellerich, M., Verbeke, K., Vanrenterghem, Y. (2006) Rifampin induces alterations in mycophenolic acid glucuronidation and elimination: Implications for drug exposure in renal allograft recipients. Clin. Pharmacol. Ther. 80, 509–521. <https://doi.org/10.1016/j.clpt.2006.08.002>
17. Pieper, A. K., Buhle, F., Bauer, S., Mai, I., Budde, K., Haffner, D., Neumayer, H. H., Querfeld, U. (2004) The effect of sevelamer on the pharmacokinetics of cyclosporin A and mycophenolate mofetil after renal transplantation. Nephrol. Dial. Transplant. 19, 2630–2633. <https://doi.org/10.1093/ndt/gfh446>
18. Rissling, O., Glander, P., Hambach, P., Mai, M., Brakemeier, S., Klonower, D., Halleck, F., Singer, E., Schrezenmeier, E. V., Durr, M., Neumayer, H. H., Budde, K. (2015) No relevant pharmacokinetic interaction between pantoprazole and mycophenolate in renal transplant patients: A randomized crossover study. Br. J. Clin. Pharmacol. 80, 1086–1096. <https://doi.org/10.1111/bcp.12664>
19. Schmidt, L. E., Rasmussen, A., Norrelykke, M. R., Poulsen, H. E., Hansen, B. A. (2001) The effect of selective bowel decontamination on the pharmacokinetics of mycophenolate mofetil in liver transplant recipients. Liver Transpl. 7, 739–742. <https://doi.org/10.1053/jlts.2001.26365>
20. Sima, M., Bakhouche, H., Hartinger, J., Cikankova, T., Slanar, O. (2019) Therapeutic drug monitoring of antibiotic agents: Evaluation of predictive performance. Eur. J. Hosp. Pharm. 26, 85–88. <https://doi.org/10.1136/ejhpharm-2017-001396>
21. Stuckey, L., Clark Ojo, T., Park, J. M., Annesley, T., Bartos, C., Cibrik, D. M. (2014) Mycophenolic acid pharmacokinetics in lung transplant recipients with cystic fibrosis. Ther. Drug Monit. 36, 148–151. <https://doi.org/10.1097/FTD.0b013e3182a8eea9>
22. Tang, J. T., de Winter, B. C., Hesselink, D. A., Sombogaard, F., Wang, L. L., van Gelder, T. (2017) The pharmacokinetics and pharmacodynamics of mycophenolate mofetil in younger and elderly renal transplant recipients. Br. J. Clin. Pharmacol. 83, 812–822. <https://doi.org/10.1111/bcp.13154>
23. Ting, L. S., Partovi, N., Levy, R. D., Riggs, K. W., Ensom, M. H. (2008) Pharmacokinetics of mycophenolic acid and its phenolic-glucuronide and ACYl glucuronide metabolites in stable thoracic transplant recipients. Ther. Drug Monit. 30, 282–291. <https://doi.org/10.1097/FTD.0b013e318166eba0>
24. Vietri, M., Pietrabissa, A., Mosca, F., Pacifici, G. M. (2000) Mycophenolic acid glucuronidation and its inhibition by non-steroidal anti-inflammatory drugs in human liver and kidney. Eur. J. Clin. Pharmacol. 56, 659–664. <https://doi.org/10.1007/s002280000227>
25. Yu, L. X., Amidon, G. L., Polli, J. E., Zhao, H., Mehta, M. U., Conner, D. P., Shah, V. P., Lesko, L. J., Chen, M. L., Lee, V. H., Hussain, A. S. (2002) Biopharmaceutics classification system: The scientific basis for biowaiver extensions. Pharm. Res. 19, 921–925. <https://doi.org/10.1023/A:1016473601633>
26. Zhang, D., Chow, D. S. (2017) Clinical pharmacokinetics of mycophenolic acid in hematopoietic stem cell transplantation recipients. Eur. J. Drug Metab. Pharmacokinet. 42, 183–189. <https://doi.org/10.1007/s13318-016-0378-6>
27. Zhao, W., Fakhoury, M., Deschenes, G., Roussey, G., Brochard, K., Niaudet, P., Tsimaratos, M., Andre, J. L., Cloarec, S., Cochat, P., Bensman, A., Azougagh, S., Jacqz-Aigrain, E. (2010) Population pharmacokinetics and pharmacogenetics of mycophenolic acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients. J. Clin. Pharmacol. 50, 1280–1291. <https://doi.org/10.1177/0091270009357429>
front cover

ISSN 1214-6994 (Print) ISSN 2336-2936 (Online)

Archive