Prague Med. Rep. 2019, 120, 52-63

https://doi.org/10.14712/23362936.2019.10

Pharmacokinetics of Dasatinib

Jana Hořínková, Martin Šíma, Ondřej Slanař

Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic

Received April 12, 2019
Accepted September 4, 2019

References

1. Aplenc, R., Blaney, S. M., Strauss, L. C., Balis, F. M., Shusterman, S., Ingle, A. M., Agrawal, S., Sun, J., Wright, J. J., Adamson, P. C. (2011) Pediatric phase I trial and pharmacokinetic study of dasatinib: A report from the children’s oncology group phase I consortium. J. Clin. Oncol. 29, 839–844. <https://doi.org/10.1200/JCO.2010.30.7231> <PubMed>
2. AstraZeneca Pharmaceuticals (2012) Prilosec – Full prescribing information. Available at: https:// www.accessdata.fda.gov/drugsatfda_docs/label/2012/019810s096lbl.pdf.
3. Borst, P., Elferink, R. O. (2002) Mammalian ABC transporters in health and disease. Annu. Rev. Biochem. 71, 537–592. <https://doi.org/10.1146/annurev.biochem.71.102301.093055>
4. Bristol-Myers Squibb (2006) Sprycel: Summary of product characteristics. Available at: https://www.ema. europa.eu/en/documents/product-information/sprycel-epar-product-information_en.pdf.
5. Bristol-Myers Squibb (2017) Sprycel: Full prescribing information. Available at: https://packageinserts.bms. com/pi/pi_sprycel.pdf.
6. Bristol-Myers Squibb Pharmaceutical Research Institute (2007) Investigator brochure: Dasatinib (BMS-354825). Available at: http://spirit-cml.org/isf/referencesafetyinformation/1.2%20Dasatinib%20RSI%20-%20 Dasatinib%20IB%20(Nov07)%20superseded.pdf.
7. Chandani, R., He, J., Trabelsi, F. (2017) Atypical pharmacokinetic profiles observed with dasatinib reference listed drug product in bioequivalence studies. Presented at the AAPS Annual Meeting, San Diego. Available at: https://www.biopharmaservices.com/wp-content/uploads/2018/06/Poster-1-Dasatinib -final-AAPS-2017.pdf.
8. Chen, Y., Agarwal, S., Shaik, N. M., Chen, C., Yang, Z., Elmquist, W. F. (2009) P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib. J. Pharmacol. Exp. Ther. 330, 956–963. <https://doi.org/10.1124/jpet.109.154781>
9. Christopher, L. J., Cui, D., Li, W., Barros, A. Jr., Arora, V. K., Zhang, H., Wang, L., Zhang, D., Manning, J. A., He, K., Fletcher, A. M., Ogan, M., Lago, M., Bonacorsi, S. J., Humphreys, W. G., Iyer, R. A. (2008a) Biotransformation of [14C]dasatinib: in vitro studies in rat, monkey, and human and disposition after administration to rats and monkeys. Drug Metab. Dispos. 36, 1341–1356. <https://doi.org/10.1124/dmd.107.018234>
10. Christopher, L. J., Cui, D., Wu, C., Luo, R., Manning, J. A., Bonacorsi, S. J., Lago, M., Allentoff, A., Lee, F. Y., McCann, B., Galbraith, S., Reitberg, D. P., He, K., Barros, A. Jr., Blackwood-Chirchir, A., Humphreys, W. G., Iyer, R. A. (2008b) Metabolism and disposition of dasatinib after oral administration to humans. Drug Metab. Dispos. 36, 1357–1364. <https://doi.org/10.1124/dmd.107.018267>
11. Chu, S., Tanaka, S., Kaunitz, J. D., Montrose, M. H. (1999) Dynamic regulation of gastric surface pH by luminal pH. J. Clin. Invest. 103, 605–612. <https://doi.org/10.1172/JCI5217> <PubMed>
12. Cohen, P. (2002) Protein kinases – The major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1, 309–315. <https://doi.org/10.1038/nrd773>
13. Dai, G., Pfister, M., Blackwood-Chirchir, A., Roy, A. (2008) Importance of characterizing determinants of variability in exposure: Application to dasatinib in subjects with chronic myeloid leukemia. J. Clin. Pharmacol. 48, 1254–1269. <https://doi.org/10.1177/0091270008320604>
14. Demetri, G. D., Lo Russo, P., MacPherson, I. R., Wang, D., Morgan, J. A., Brunton, V. G., Paliwal, P., Agrawal, S., Voi, M., Evans, T. R. (2009) Phase I dose-escalation and pharmacokinetic study of dasatinib in patients with advanced solid tumors. Clin. Cancer Res. 15, 6232–6240. <https://doi.org/10.1158/1078-0432.CCR-09-0224>
15. Eley, T., Luo, F. R., Agrawal, S., Sanil, A., Manning, J., Li, T., Blackwood-Chirchir, A., Bertz, R. (2009) Phase I study of the effect of gastric acid pH modulators on the bioavailability of oral dasatinib in healthy subjects. J. Clin. Pharmacol. 49, 700–709. <https://doi.org/10.1177/0091270009333854>
16. Furmanski, B. D., Hu, S., Fujita, K. I., Li, L., Gibson, A. A., Janke, L. J., Williams, R. T., Schuetz, J. D., Sparreboom, A., Baker, S. D. (2013) Contribution of ABCC4-mediated gastric transport to the absorption and efficacy of dasatinib. Clin. Cancer Res. 19, 4359–4370. <https://doi.org/10.1158/1078-0432.CCR-13-0980> <PubMed>
17. Giannoudis, A., Davies, A., Lucas, C. M., Harris, R. J., Pirmohamed, M., Clark, R. E. (2008) Effective dasatinib uptake may occur without human organic cation transporter 1 (hOCT1): Implications for the treatment of imatinib-resistant chronic myeloid leukemia. Blood 112, 3348–3354. <https://doi.org/10.1182/blood-2007-10-116236> <PubMed>
18. He, K., Lago, M. W., Iyer, R. A., Shyu, W. C., Humphreys, W. G., Christopher, L. J. (2008) Lacteal secretion, fetal and maternal tissue distribution of dasatinib in rats. Drug Metab. Dispos. 36, 2564–2570. <https://doi.org/10.1124/dmd.108.022764>
19. Hegedus, C., Ozvegy-Laczka, C., Apati, A., Magocsi, M., Nemet, K., Orfi, L., Keri, G., Katona, M., Takats, Z., Varadi, A., Szakacs, G., Sarkadi, B. (2009) Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: Implications for altered anti-cancer effects and pharmacological properties. Br. J. Pharmacol. 158, 1153–1164. <https://doi.org/10.1111/j.1476-5381.2009.00383.x> <PubMed>
20. Hiwase, D. K., Saunders, V., Hewett, D., Frede, A., Zrim, S., Dang, P., Eadie, L., To, L. B., Melo, J., Kumar, S., Hughes, T. P., White, D. L. (2008) Dasatinib cellular uptake and efflux in chronic myeloid leukemia cells: therapeutic implications. Clin. Cancer Res. 14, 3881–3888. <https://doi.org/10.1158/1078-0432.CCR-07-5095>
21. Ikeda, H., Kanakura, Y., Tamaki, T., Kuriu, A., Kitayama, H., Ishikawa, J., Kanayama, Y., Yonezawa, T., Tarui, S., Griffin, J. D. (1991) Expression and functional role of the proto-oncogene c-kit in acute myeloblastic leukemia cells. Blood 78, 2962–2968.
22. Ishida, Y., Murai, K., Yamaguchi, K., Miyagishima, T., Shindo, M., Ogawa, K., Nagashima, T., Sato, S., Watanabe, R., Yamamoto, S., Hirose, T., Saitou, S., Yonezumi, M., Kondo, T., Kato, Y., Mochizuki, N., Ohno, K., Kishino, S., Kubo, K., Oyake, T., Ito, S. (2016) Pharmacokinetics and pharmacodynamics of dasatinib in the chronic phase of newly diagnosed chronic myeloid leukemia. Eur. J. Clin. Pharmacol. 72, 185–193. <https://doi.org/10.1007/s00228-015-1968-y>
23. Johnson, F. M., Agrawal, S., Burris, H., Rosen, L., Dhillon, N., Hong, D., Blackwood-Chirchir, A., Luo, F. R., Sy, O., Kaul, S., Chiappori, A. A. (2010) Phase 1 pharmacokinetic and drug-interaction study of dasatinib in patients with advanced solid tumors. Cancer 116, 1582–1591. <https://doi.org/10.1002/cncr.24927>
24. Kamath, A. V., Wang, J., Lee, F. Y., Marathe, P. H. (2008) Preclinical pharmacokinetics and in vitro metabolism of dasatinib (BMS-354825): A potent oral multi-targeted kinase inhibitor against SRC and BCR-ABL. Cancer Chemother. Pharmacol. 61, 365–376. <https://doi.org/10.1007/s00280-007-0478-8>
25. Lagas, J. S., van Waterschoot, R. A., van Tilburg, V. A., Hillebrand, M. J., Lankheet, N., Rosing, H., Beijnen, J. H., Schinkel, A. H. (2009) Brain accumulation of dasatinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by elacridar treatment. Clin. Cancer Res. 15, 2344–2351. <https://doi.org/10.1158/1078-0432.CCR-08-2253>
26. Liu, F., Lang, L. W., Jiang, J., Lu, H. J., Wang, J. M., Wang, S. C. (2013) Synthesis and biopharmaceutical studies of JLTN as potential dasatinib prodrug. Chem. Pharm. Bull. (Tokyo) 61, 877–881. <https://doi.org/10.1248/cpb.c13-00248>
27. Lombardo, L. J., Lee, F. Y., Chen, P., Norris, D., Barrish, J. C., Behnia, K., Castaneda, S., Cornelius, L. A., Das, J., Doweyko, A. M., Fairchild, C., Hunt, J. T., Inigo, I., Johnston, K., Kamath, A., Kan, D., Klei, H., Marathe, P., Pang, S., Peterson, R., Pitt, S., Schieven, G. L., Schmidt, R. J., Tokarski, J., Wen, M. L., Wityak, J., Borzilleri, R. M. (2004) Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl) -piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J. Med. Chem. 47, 6658–6661. <https://doi.org/10.1021/jm049486a>
28. Lubach, J. W., Chen, J. Z., Hau, J., Imperio, J., Coraggio, M., Liu, L., Wong, H. (2013) Investigation of the rat model for preclinical evaluation of pH-dependent oral absorption in humans. Mol. Pharm. 10, 3997–4004. <https://doi.org/10.1021/mp400283j>
29. Luo, F. R., Yang, Z., Camuso, A., Smykla, R., McGlinchey, K., Fager, K., Flefleh, C., Castaneda, S., Inigo, I., Kan, D., Wen, M. L., Kramer, R., Blackwood-Chirchir, A., Lee, F. Y. (2006) Dasatinib (BMS-354825) pharmacokinetics and pharmacodynamic biomarkers in animal models predict optimal clinical exposure. Clin. Cancer Res. 12, 7180–7186. <https://doi.org/10.1158/1078-0432.CCR-06-1112>
30. Matsuoka, A., Takahashi, N., Miura, M., Niioka, T., Kawakami, K., Matsunaga, T., Sawada, K. (2012) H2-receptor antagonist influences dasatinib pharmacokinetics in a patient with Philadelphia-positive acute lymphoblastic leukemia. Cancer Chemother. Pharmacol. 70, 351–352. <https://doi.org/10.1007/s00280-012-1900-4>
31. Minematsu, T., Giacomini, K. M. (2011) Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol. Cancer Ther. 10, 531–539. <https://doi.org/10.1158/1535-7163.MCT-10-0731> <PubMed>
32. Mylan Pharmaceuticals (2011) Mylan-famotidine – Product monograph. Available at: https://pdf.hres.ca /dpd_pm/00014548.PDF.
33. Novartis (2018) Gleevec: Full prescribing information. Available at: https://www.pharma.us.novartis.com /sites/www.pharma.us.novartis.com/files/gleevec_tabs.pdf.
34. O’Hare, T., Walters, D. K., Stoffregen, E. P., Jia, T., Manley, P. W., Mestan, J., Cowan-Jacob, S. W., Lee, F. Y., Heinrich, M. C., Deininger, M. W., Druker, B. J. (2005) In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 65, 4500–4505. <https://doi.org/10.1158/0008-5472.CAN-05-0259>
35. Pali-Scholl, I., Herzog, R., Wallmann, J., Szalai, K., Brunner, R., Lukschal, A., Karagiannis, P., Diesner, S. C., Jensen-Jarolim, E. (2010) Antacids and dietary supplements with an influence on the gastric pH increase the risk for food sensitization. Clin. Exp. Allergy 40, 1091–1098. <https://doi.org/10.1111/j.1365-2222.2010.03468.x> <PubMed>
36. Pang, J., Dalziel, G., Dean, B., Ware, J. A., Salphati, L. (2013) Pharmacokinetics and absorption of the anticancer agents dasatinib and GDC-0941 under various gastric conditions in dogs – Reversing the effect of elevated gastric pH with betaine HCl. Mol. Pharm. 10, 4024–4031. <https://doi.org/10.1021/mp400356m>
37. Sasaki, K., Lahoti, A., Jabbour, E., Jain, P., Pierce, S., Borthakur, G., Daver, N., Kadia, T., Pemmaraju, N., Ferrajoli, A., O’Brien, S., Kantarjian, H., Cortes, J. (2016) Clinical safety and efficacy of nilotinib or dasatinib in patients with newly diagnosed chronic-phase chronic myelogenous leukemia and pre-existing liver and/or renal dysfunction. Clin. Lymphoma Myeloma Leuk. 16, 152–162. <https://doi.org/10.1016/j.clml.2015.12.003> <PubMed>
38. Shah, N. P., Tran, C., Lee, F. Y., Chen, P., Norris, D., Sawyers, C. L. (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401. <https://doi.org/10.1126/science.1099480>
39. Šíma, M., Kutinová-Canová, N., Ryšánek, P., Hořínková, J., Moškořová, D., Slanař, O. (2019) Gastric pH in rats: Key determinant for preclinical evaluation of pH-dependent oral drug absorption. Prague Med. Rep. 120, 5–9. <https://doi.org/10.14712/23362936.2019.5>
40. Szczylik, C., Skorski, T., Nicolaides, N. C., Manzella, L., Malaguarnera, L., Venturelli, D., Gewirtz, A. M., Calabretta, B. (1991) Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science 253, 562–565. <https://doi.org/10.1126/science.1857987>
41. Takahashi, N., Miura, M., Niioka, T., Sawada, K. (2012) Influence of H2-receptor antagonists and proton pump inhibitors on dasatinib pharmacokinetics in Japanese leukemia patients. Cancer Chemother. Pharmacol. 69, 999–1004. <https://doi.org/10.1007/s00280-011-1797-3>
42. Takahashi, S., Miyazaki, M., Okamoto, I., Ito, Y., Ueda, K., Seriu, T., Nakagawa, K., Hatake, K. (2011) Phase I study of dasatinib (BMS-354825) in Japanese patients with solid tumors. Cancer Sci. 102, 2058–2064. <https://doi.org/10.1111/j.1349-7006.2011.02041.x>
43. Tang, S. C., de Vries, N., Sparidans, R. W., Wagenaar, E., Beijnen, J. H., Schinkel, A. H. (2013) Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) gene dosage on plasma pharmacokinetics and brain accumulation of dasatinib, sorafenib, and sunitinib. J. Pharmacol. Exp. Ther. 346, 486–494. <https://doi.org/10.1124/jpet.113.205583>
44. Thomas, J., Wang, L., Clark, R. E., Pirmohamed, M. (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104, 3739–3745. <https://doi.org/10.1182/blood-2003-12-4276>
45. Thomas, S. M., Brugge, J. S. (1997) Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13, 513–609. <https://doi.org/10.1146/annurev.cellbio.13.1.513>
46. Visani, G., Breccia, M., Gozzini, A., Specchia, G., Montefusco, E., Morra, E., Annunziata, M., Camera, A., Cavazzini, F., Stagno, F., Pregno, P., Usala, E., Santini, V., Piccaluga, P. P., Isidori, A. (2010) Dasatinib, even at low doses, is an effective second-line therapy for chronic myeloid leukemia patients resistant or intolerant to imatinib. Results from a real life-based Italian multicenter retrospective study on 114 patients. Am. J. Hematol. 85, 960–963. <https://doi.org/10.1002/ajh.21871>
47. Yago, M. R., Frymoyer, A. R., Smelick, G. S., Frassetto, L. A., Budha, N. R., Dresser, M. J., Ware, J. A., Benet, L. Z. (2013) Gastric reacidification with betaine HCl in healthy volunteers with rabeprazole-induced hypochlorhydria. Mol. Pharm. 10, 4032–4037. <https://doi.org/10.1021/mp4003738> <PubMed>
48. Yago, M. R., Frymoyer, A., Benet, L. Z., Smelick, G. S., Frassetto, L. A., Ding, X., Dean, B., Salphati, L., Budha, N., Jin, J. Y., Dresser, M. J., Ware, J. A. (2014) The use of betaine HCl to enhance dasatinib absorption in healthy volunteers with rabeprazole-induced hypochlorhydria. AAPS J. 16, 1358–1365. <https://doi.org/10.1208/s12248-014-9673-9> <PubMed>
49. Yang, J., Liu, X., Nyland, S. B., Zhang, R., Ryland, L. K., Broeg, K., Baab, K. T., Jarbadan, N. R., Irby, R., Loughran, T. P. Jr. (2010) Platelet-derived growth factor mediates survival of leukemic large granular lymphocytes via an autocrine regulatory pathway. Blood 115, 51–60. <https://doi.org/10.1182/blood-2009-06-223719> <PubMed>
front cover

ISSN 1214-6994 (Print) ISSN 2336-2936 (Online)

Archive